报告:阿里云:2025年人人懂AI之从机器学习到大模型报告.pdf
报告由刘军民编写,旨在为 AI 技术爱好者提供启蒙,详细介绍了 AI 从基础到前沿应用的知识,涵盖机器学习、深度学习、神经网络、AIGC 及大模型等方面,探讨了 AI 技术在实际应用中的问题与挑战,并提供了实践指导。
AI 基础概念
-
定义与分类:AI 以数学、统计学为基础,从数据中挖掘规律并预测结果,主要分为机器学习和知识推理,其中机器学习包含监督学习、非监督学习和强化学习,监督学习应用最广。
-
训练与推理过程:以监督学习为例,先搜集数据并预处理、提取特征,再选择或开发模型,定义模型好坏,最后找出最佳函数及其参数完成训练,训练好的模型可用于推理。
-
三要素及应用场景:数据、算法、算力是 AI 的关键要素,数据质量决定模型推理质量,算法影响模型效果,算力支持模型训练,合适的应用场景对 AI 的成功应用至关重要。
机器学习进阶
-
“Hello world” 样例:以房价预测为例,展示如何通过 AI 训练找到合适函数,介绍数据集和模型的数学表达,以及损失函数和梯度下降算法在模型训练中的作用。
-
多变量扩展:实际问题中输入变量较多,处理方法与单变量类似,通过梯度下降找到损失函数最小值及对应参数,只是计算量更大。
深度学习与神经网络
-
神经网络的由来:神经网络类比医学神经网络,由大量神经元相互连接构成,是深度学习的重要基础。
-
深度学习关键概念:介绍激活函数、Softmax 多分类、卷积、多输入输出通道、1*1 卷积、池化、全连接等概念及其在神经网络中的作用。
-
经典 CNN 及实践:剖析 LeNet、AlexNet 等经典卷积神经网络,讲解其结构、应用场景及特点,并提供搭建神经网络和在云上搭建深度学习 notebook 开发环境的实践指导。
AIGC 与大模型
-
AIGC 的影响:AIGC 在多领域引发变革,如搜索推荐、人机交互、内容创作等,带来新的发展机遇,同时也让人们看到硅基智能的潜力。
-
大语言模型(LLM):介绍 LLM 的语言数据特征、文本转向量方法、应用开发新范式,分析其在实际应用中的难点问题及 “知识茧房” 缺陷。
-
解决方案与实践:提出 RAG 方法破解 LLM “知识茧房” 问题,介绍知识库 + LLM 智能问答系统的构建流程和 Langchain 框架,并提供搭建 Langchain-ChatGLM LLM 环境和 LLM + 知识库智能问答钉钉机器人的实践步骤。
AI 技术应用思考
-
产业界与学术界动态:产业界持续探索 AI 新领域,学术界主要研究模式识别、机器学习等领域,可从这些动态中寻找 AI 应用的启发。
-
AI 落地三问:思考将 AI 技术融入产品时,需从场景、数据、算法 & 算力三个方面评估,确保应用的可行性和有效性。
#大模型应用 DeepSeek自学手册-从理论模型训练到实践模型应用
(方便大家直接下载,这里给大家整理好了书籍的PDF,扫码即可↓↓↓↓)
…(由于篇幅有限)
(方便大家直接下载,这里给大家整理好了书籍的PDF,扫码即可↓↓↓↓)