从零开始打造MCP+Ollama集成,实战教程来了!

在过去一两个个月里,模型上下文协议(Model Context Protocol,MCP)频繁出现在各种技术微信交流群中。我们已经看到了许多很酷的集成案例,大家似乎相信这个标准会长期存在,因为它为大模型与工具或软件的集成设立了规范。

今天,向大家展示如何实现Ollama与MCP服务器的集成。

1、实现步骤

整个集成的主要步骤包括:

  1. 创建测试以及使用MCP服务
  2. 创建客户端文件来发送请求并启动服务
  3. 从服务获取工具到客户端
  4. 将工具转换为pydantic模型
  5. 通过response format将工具(作为pydantic模型)传递给Ollama
  6. 通过Ollama发送对话并接收结构化输出
  7. 如果响应中包含工具,则向服务器发送请求

2、安装依赖

要运行这个项目,需要安装必要的包。fastmcp库在使用uv运行代码时效果最佳。uv很容易下载和使用,类似于Poetry和pip。

使用以下命令将所需库添加到你的项目中:

uv add fastmcp ollama

这会同时安装MCP服务器和Ollama聊天库,以便你在它们的基础上构建客户端和服务器逻辑。

3、文件结构

设置时,你的文件夹应该是这样的:

your folder
├── server.py
└── client.py

server.py文件包含MCP服务器和想要暴露的工具。client.py文件在后台进程中启动服务器,获取可用工具,并与Ollama连接。

4、示例MCP服务器

首先,让我们使用fastmcp库创建一个简单的MCP服务器。该服务器暴露了一个名为magicoutput的工具。这个函数接受两个字符串输入并返回一个固定的字符串作为输出。

@mcp.tool()装饰器用于将函数注册为MCP服务器中的可用工具。当服务器启动后,任何客户端都可以获取并调用这个工具。

通过在主块中调用mcp.run()来启动服务器。

# server.py
from fastmcp import FastMCP
# 创建MCP服务器
mcp = FastMCP("TestServer")
# 我的工具:
@mcp.tool()
def magicoutput(obj1: str, obj2: str) -> int:
    """使用此函数获取魔法输出"""
    print(f"输入参数:obj1:{obj1},obj2:{obj2}")
    return f"输入参数:obj1:{obj1},obj2:{obj2},魔法输出:Hello MCP,MCP Hello"
if __name__ == "__main__":
    mcp.run()

我们运行下面命令,进行调试服务端的工具:

fastmcp dev server.py

输入日志如下:

Need to install the following packages:
@modelcontextprotocol/inspector@0.10.2
Ok to proceed? (y) y

Starting MCP inspector...
⚙️ Proxy server listening on port 6277
🔍 MCP Inspector is up and running at http://127.0.0.1:6274 🚀
New SSE connection
Query parameters: [Object:  

本地访问页面http://127.0.0.1:6274/#tools,我们可以看构造的函数,并且可以调试

img

5、获取服务器工具

为了连接到MCP服务器并列出可用工具,我们使用来自mcp库的ClientSessionStdioServerParametersstdio_client

我们定义一个名为OllamaMCP的类来处理服务器连接和工具获取。在类内部,_async_run方法启动异步会话,初始化它,并从服务器获取工具列表。

我们使用threading.Event()来跟踪会话何时准备就绪,并将工具列表存储在self.tools中。

在脚本末尾,我们定义服务器参数并在后台线程中运行客户端。这会启动连接并打印服务器返回的工具元数据。

# client.py
import asyncio
import threading 
from pathlib import Path
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from typing import Any

class OllamaMCP:
    """
    Ollama和FastMCP的简单集成
    """
    def __init__(self, server_params: StdioServerParameters):
        self.server_params = server_params
        self.initialized = threading.Event()
        self.tools: list[Any] = []
    def _run_background(self):
        asyncio.run(self._async_run())
    async def _async_run(self):
        try:
            async with stdio_client(self.server_params) as (read, write):
                async with ClientSession(read, write) as session:
                    await session.initialize()
                    self.session = session
                    tools_result = await session.list_tools()
                    self.tools = tools_result.tools
                    print(tools_result)
        except Exception as e:  
            print(f"启动MCP服务器时出错 {str(e)}")
if __name__ == "__main__":
    server_parameters = StdioServerParameters(
        command="uv",
        args=["run", "python", "server.py"],
        cwd=str(Path.cwd())
    )
    ollamamcp = OllamaMCP(server_params=server_parameters)
    ollamamcp._run_background()

运行上面的代码后,你会从服务器得到以下响应,其中可以看到服务器上可用的工具列表。

[04/19/25 12:10:47] INFO     Starting server "TestServer"...       server.py:261
meta=None nextCursor=None tools=[Tool(name='magicoutput', description='使用此函数获取魔法输出', inputSchema={'properties': {'obj1': {'title': 'Obj1', 'type': 'string'}, 'obj2': {'title': 'Obj2', 'type': 'string'}}, 'required': ['obj1', 'obj2'], 'title': 'magicoutputArguments', 'type': 'object'})]

6、将工具转换为pydantic模型

现在我们已经从服务器接收到了工具列表,下一步是将它们转换为Pydantic模型。我们使用Pydantic的create_model来动态定义新的响应模式,基于服务器的工具定义。还有一个辅助函数来将JSON类型映射到有效的Python类型。

Pydantic 是一个用于数据验证和序列化的 Python 模型库。它在 FastAPI 中广泛使用,用于定义请求体、响应体和其他数据模型,提供了强大的类型检查和自动文档生成功能

这帮助我们动态定义模型,使语言模型确切知道在返回工具参数时应使用什么结构。

img

# client.py
import asyncio
import threading
from pathlib import Path
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from typing import Any, Union, Optional
from pydantic import BaseModel, create_model, Field

class OllamaMCP:
    """Ollama和FastMCP的简单集成"""

    def __init__(self, server_params: StdioServerParameters):
        self.server_params = server_params
        self.initialized = threading.Event()
        self.tools: list[Any] = []

    def _run_background(self):
        asyncio.run(self._async_run())

    async def _async_run(self):
        try:
            async with stdio_client(self.server_params) as (read, write):
                async with ClientSession(read, write) as session:
                    await session.initialize()
                    self.session = session
                    tools_result = await session.list_tools()
                    self.tools = tools_result.tools
        except Exception as e:  
            print(f"启动MCP服务器时出错 {str(e)}")


    def create_response_model(self):
        dynamic_classes = {}
        for tool in self.tools:
            class_name = tool.name.capitalize()
            properties = {}
            for prop_name, prop_info in tool.inputSchema.get("properties", {}).items():
                json_type = prop_info.get("type", "string")
                properties[prop_name] = self.convert_json_type_to_python_type(json_type)

            model = create_model(
                class_name,
                __base__=BaseModel,
                __doc__=tool.description,
                **properties,
            )
            dynamic_classes[class_name] = model

        if dynamic_classes:
            all_tools_type = Union[tuple(dynamic_classes.values())]
            Response = create_model(
                "Response",
                __base__=BaseModel,
                __doc__="LLm响应类",
                response=(str, Field(..., description= "向用户确认函数将被调用。")),
                tool=(all_tools_type, Field(
                    ...,
                    description="用于运行和获取魔法输出的工具"
                )),
            )
        else:
            Response = create_model(
                "Response",
                __base__=BaseModel,
                __doc__="LLm响应类",
                response=(str, ...),
                tool=(Optional[Any], Field(None, description="如果不返回None则使用的工具")),
            )

        self.response_model = Response
        print(Response.model_fields)

    @staticmethod
    def convert_json_type_to_python_type(json_type: str):
        """简单地将JSON类型映射到Python(Pydantic)类型。"""
        if json_type == "integer":
            return (int, ...)
        if json_type == "number":
            return (float, ...)
        if json_type == "string":
            return (str, ...)
        if json_type == "boolean":
            return (bool, ...)
        return (str, ...)
    
if __name__ == "__main__":
    server_parameters = StdioServerParameters(
        command="uv",
        args=["run", "python", "server.py"],
        cwd=str(Path.cwd())
    )
    ollamamcp = OllamaMCP(server_params=server_parameters)
    ollamamcp._run_background()
    ollamamcp.create_response_model()

运行代码后,print(Response.model_fields)的输出显示了我们刚刚构建的响应模型的完整结构。这个模型包括两部分:一部分是助手发送给用户的消息,另一部分是可选字段,保存工具参数。

如果模型填充了工具字段,我们将使用它来调用服务器。否则,我们只使用普通的响应字符串。

[04/19/25 12:17:20] INFO     Starting server "TestServer"...       server.py:261
{'response': FieldInfo(annotation=str, required=True, description='向用户确认函数将被调用。'), 'tool': FieldInfo(annotation=Magicoutput, required=True, description='用于运行和获取魔法输出的工具')}

7、使用后台线程和队列调用工具

现在工具可以作为pydantic模型使用了,我们可以继续并启用工具调用。为此,我们使用后台线程并设置两个队列。一个用于向服务器发送请求,另一个用于接收响应。

call_tool方法将请求放入队列,后台线程监听该请求。一旦使用MCP会话调用工具,结果就会放入响应队列。

import asyncio
import threading
import threading 
import queue
from pathlib import Path
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from typing import Any, Union, Optional
from pydantic import BaseModel, create_model, Field

class OllamaMCP:
    """Ollama和FastMCP的简单集成"""
    def __init__(self, server_params: StdioServerParameters):
        self.server_params = server_params
        self.initialized = threading.Event()
        self.tools: list[Any] = []
        self.request_queue = queue.Queue()
        self.response_queue = queue.Queue()
        # 启动后台线程异步处理请求
        self.thread = threading.Thread(target=self._run_background, daemon=True)
        self.thread.start()
    def _run_background(self):
        asyncio.run(self._async_run())
    async def _async_run(self):
        try:
            async with stdio_client(self.server_params) as (read, write):
                async with ClientSession(read, write) as session:
                    await session.initialize()
                    self.session = session
                    tools_result = await session.list_tools()
                    self.tools = tools_result.tools
                    self.initialized.set()
                    while True:
                        try:
                            tool_name, arguments = self.request_queue.get(block=False)
                        except queue.Empty:
                            await asyncio.sleep(0.01)
                            continue
                        if tool_name is None:
                            print("收到关闭信号。")
                            break
                        try:
                            result = await session.call_tool(tool_name, arguments)
                            self.response_queue.put(result)
                        except Exception as e:
                            self.response_queue.put(f"错误: {str(e)}")
        except Exception as e:
            print("MCP会话初始化错误:", str(e))
            self.initialized.set()  # 即使初始化失败也解除等待线程的阻塞
            self.response_queue.put(f"MCP初始化错误: {str(e)}")

    def call_tool(self, tool_name: str, arguments: dict[str, Any]) -> Any:
        """
        发布工具调用请求并等待结果
        """
        if not self.initialized.wait(timeout=30):
            raise TimeoutError("MCP会话未能及时初始化。")
        self.request_queue.put((tool_name, arguments))
        result = self.response_queue.get()
        return result

    def shutdown(self):
        """
        干净地关闭持久会话
        """
        self.request_queue.put((None, None))
        self.thread.join()
        print("持久MCP会话已关闭。")

    def create_response_model(self):
        dynamic_classes = {}
        for tool in self.tools:
            class_name = tool.name.capitalize()
            properties = {}
            for prop_name, prop_info in tool.inputSchema.get("properties", {}).items():
                json_type = prop_info.get("type", "string")
                properties[prop_name] = self.convert_json_type_to_python_type(json_type)
            model = create_model(
                class_name,
                __base__=BaseModel,
                __doc__=tool.description,
                **properties,
            )
            dynamic_classes[class_name] = model
        if dynamic_classes:
            all_tools_type = Union[tuple(dynamic_classes.values())]
            Response = create_model(
                "Response",
                __base__=BaseModel,
                response=(str, ...),
                tool=(Optional[all_tools_type], Field(None, description="如果不返回None则使用的工具")),
            )
        else:
            Response = create_model(
                "Response",
                __base__=BaseModel,
                response=(str, ...),
                tool=(Optional[Any], Field(None, description="如果不返回None则使用的工具")),
            )
        self.response_model = Response
    @staticmethod
    def convert_json_type_to_python_type(json_type: str):
        """简单地将JSON类型映射到Python(Pydantic)类型。"""
        if json_type == "integer":
            return (int, ...)
        if json_type == "number":
            return (float, ...)
        if json_type == "string":
            return (str, ...)
        if json_type == "boolean":
            return (bool, ...)
        return (str, ...)
if __name__ == "__main__":
    server_parameters = StdioServerParameters(
        command="uv",
        args=["run", "python", "server.py"],
        cwd=str(Path.cwd())
    )
    ollamamcp = OllamaMCP(server_params=server_parameters)
    if ollamamcp.initialized.wait(timeout=30):
        print("准备调用工具。")
        result = ollamamcp.call_tool(
            tool_name="magicoutput",
            arguments={"obj1": "dog", "obj2": "cat"}
        )
        print(result)
    else:
        print("错误: 初始化超时。")

请注意,在这个阶段,我们正在使用call_tool方法手动传递函数名称和参数。在下一节中,我们将根据Ollama返回的结构化输出触发这个调用。

运行此代码后,我们可以确认一切正常。工具被服务器正确识别、执行,并返回结果。

[04/19/25 12:18:26] INFO     Starting server "TestServer"...       server.py:261
准备调用工具。
meta=None content=[TextContent(type='text', text='输入参数:obj1:dog,obj2:cat,魔法输出:Hello MCP,MCP Hello', annotations=None)] isError=False

8、Ollama + MCP结合

首先我们先通过Ollama部署一个大模型服务,这里我们下gemma3

imgimg下面代码中,我是设置的局域网的ip

client = Client(
  host='http://192.168.1.5:11434',
  headers={'x-some-header': 'some-value'}
)

有了队列和call_tool函数,现在是时候该集成Ollama了。我们将响应类传递到Ollama的format字段中,告诉我们的语言模型(这里是Gemma)在生成输出时遵循该模式。

我们还定义了一个ollama_chat方法,用于发送对话,验证模型的响应是否符合模式,并检查是否包含工具。如果是,它提取函数名称和参数,然后使用在后台线程中的持久MCP会话调用它。

在main函数中,我们设置服务器连接,启动后台循环,并等待一切就绪。然后我们准备系统提示和用户消息,将它们发送给Ollama,并等待结构化输出。

最后,我们打印服务器的结果并关闭会话。

import asyncio
import threading
import queue

from pathlib import Path
from typing import Any, Optional, Union
from pydantic import BaseModel, Field, create_model
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from ollama import chat,Client


client = Client(
  host='http://192.168.1.5:11434',
  headers={'x-some-header': 'some-value'}
)

class OllamaMCP:

    def __init__(self, server_params: StdioServerParameters):
        self.server_params = server_params
        self.request_queue = queue.Queue()
        self.response_queue = queue.Queue()
        self.initialized = threading.Event()
        self.tools: list[Any] = []
        self.thread = threading.Thread(target=self._run_background, daemon=True)
        self.thread.start()

    def _run_background(self):
        asyncio.run(self._async_run())

    async def _async_run(self):
        try:
            async with stdio_client(self.server_params) as (read, write):
                async with ClientSession(read, write) as session:
                    await session.initialize()
                    self.session = session
                    tools_result = await session.list_tools()
                    self.tools = tools_result.tools
                    self.initialized.set()

                    while True:
                        try:
                            tool_name, arguments = self.request_queue.get(block=False)
                        except queue.Empty:
                            await asyncio.sleep(0.01)
                            continue

                        if tool_name is None:
                            break
                        try:
                            result = await session.call_tool(tool_name, arguments)
                            self.response_queue.put(result)
                        except Exception as e:
                            self.response_queue.put(f"错误: {str(e)}")
        except Exception as e:
            print("MCP会话初始化错误:", str(e))
            self.initialized.set()  # 即使初始化失败也解除等待线程的阻塞
            self.response_queue.put(f"MCP初始化错误: {str(e)}")

    def call_tool(self, tool_name: str, arguments: dict[str, Any]) -> Any:
        """
        发布工具调用请求并等待结果
        """
        if not self.initialized.wait(timeout=30):
            raise TimeoutError("MCP会话未能及时初始化。")
        self.request_queue.put((tool_name, arguments))
        result = self.response_queue.get()
        return result

    def shutdown(self):
        """
        干净地关闭持久会话
        """
        self.request_queue.put((None, None))
        self.thread.join()
        print("持久MCP会话已关闭。")


    @staticmethod
    def convert_json_type_to_python_type(json_type: str):
        """简单地将JSON类型映射到Python(Pydantic)类型。"""
        if json_type == "integer":
            return (int, ...)
        if json_type == "number":
            return (float, ...)
        if json_type == "string":
            return (str, ...)
        if json_type == "boolean":
            return (bool, ...)
        return (str, ...)

    def create_response_model(self):
        """
        基于获取的工具创建动态Pydantic响应模型
        """
        dynamic_classes = {}
        for tool in self.tools:
            class_name = tool.name.capitalize()
            properties: dict[str, Any] = {}
            for prop_name, prop_info in tool.inputSchema.get("properties", {}).items():
                json_type = prop_info.get("type", "string")
                properties[prop_name] = self.convert_json_type_to_python_type(json_type)

            model = create_model(
                class_name,
                __base__=BaseModel,
                __doc__=tool.description,
                **properties,
            )
            dynamic_classes[class_name] = model

        if dynamic_classes:
            all_tools_type = Union[tuple(dynamic_classes.values())]
            Response = create_model(
                "Response",
                __base__=BaseModel,
                __doc__="LLm响应类",
                response=(str, Field(..., description= "向用户确认函数将被调用。")),
                tool=(all_tools_type, Field(
                    ...,
                    description="用于运行和获取魔法输出的工具"
                )),
            )
        else:
            Response = create_model(
                "Response",
                __base__=BaseModel,
                __doc__="LLm响应类",
                response=(str, ...),
                tool=(Optional[Any], Field(None, description="如果不返回None则使用的工具")),
            )
        self.response_model = Response

    async def ollama_chat(self, messages: list[dict[str, str]]) -> Any:
        """
        使用动态响应模型向Ollama发送消息。
        如果在响应中检测到工具,则使用持久会话调用它。
        """
        conversation = [{"role":"assistant", "content": f"你必须使用工具。你可以使用以下函数:{[ tool.name for tool in self.tools]}"}]
        conversation.extend(messages)
        if self.response_model is None:
            raise ValueError("响应模型尚未创建。请先调用create_response_model()。")

        # 获取聊天消息格式的JSON模式
        format_schema = self.response_model.model_json_schema()

        # 调用Ollama(假定是同步的)并解析响应
        response = client.chat(
            model="gemma3:latest",
            messages=conversation,
            format=format_schema
        )
        print("Ollama响应", response.message.content)
        response_obj = self.response_model.model_validate_json(response.message.content)
        maybe_tool = response_obj.tool

        if maybe_tool:
            function_name = maybe_tool.__class__.__name__.lower()
            func_args = maybe_tool.model_dump()
            # 使用asyncio.to_thread在线程中调用同步的call_tool方法
            output = await asyncio.to_thread(self.call_tool, function_name, func_args)
            return output
        else:
            print("响应中未检测到工具。返回纯文本响应。")
        return response_obj.response


async def main():
    server_parameters = StdioServerParameters(
        command="uv",
        args=["run", "python", "server.py"],
        cwd=str(Path.cwd())
    )

    # 创建持久会话
    persistent_session = OllamaMCP(server_parameters)

    # 等待会话完全初始化
    if persistent_session.initialized.wait(timeout=30):
        print("准备调用工具。")
    else:
        print("错误: 初始化超时。")

    # 从获取的工具创建动态响应模型
    persistent_session.create_response_model()

    # 准备给Ollama的消息

    messages = [
        {
            "role": "system",
            "content": (
                "你是一个听话的助手,上下文中有一系列工具。"
                "你的任务是使用这个函数获取魔法输出。"
                "不要自己生成魔法输出。"
                "简洁地回复一条简短消息,提及调用函数,"
                "但不提供函数输出本身。"
                "将该简短消息放在'response'属性中。"
                "例如:'好的,我会运行magicoutput函数并返回输出。'"
                "同时用正确的参数填充'tool'属性。"
            )
        },
        {
            "role": "user",
            "content": "使用函数获取这些参数的魔法输出(obj1 = Ollama和obj2 = Gemma3)"
        }
    ]

    # 调用Ollama并处理响应
    result = await persistent_session.ollama_chat(messages)
    print("最终结果:", result)

    # 完成后关闭持久会话
    persistent_session.shutdown()

if __name__ == "__main__":
    asyncio.run(main())

你可以看到输出工作得非常完美。我们收到了一个带有模型简短消息的响应,然后是一个带有将发送到MCP服务器的参数的工具。最后,我们得到了来自服务器的输出,如下所示:

[04/19/25 12:39:55] INFO     Starting server "TestServer"...       server.py:261
准备调用工具。
Ollama响应 {
"response": "好的,我将使用magicoutput函数获取obj1和obj2的魔法输出。",
"tool": {"obj1": "Wombat", "obj2": "Dog"}
}

最终结果: meta=None content=[TextContent(type='text', text='输入参数:obj1:Wombat,obj2:Dog,魔法输出:Hello MCP,MCP Hello', annotations=None)] isError=False
持久MCP会话已关闭。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值