特点:要求的数很大 ,所以要利用一些定理拆分
给定 n 组询问,每组询问给定三个整数 a,b,p,其中 p 是质数,请你输出 Cbamodp 的值。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含一组 a,b,p。
输出格式
共 n 行,每行输出一个询问的解。
数据范围
1≤n≤20,
1≤b≤a≤10^18,
1≤p≤10^5,
输入样例
3
5 3 7
3 1 5
6 4 13
输出样例
3
3
2
老规矩,先给代码
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
int qmi(int a,int b,int p)
{
int res=1;
while(b)
{
if(b&1) res=(LL)res*a%p;
a=(LL)a*a%p;
b>>=1;
}
return res;
}
int C(int a,int b,int p)
{
if(b>a) return 0;
int res=1;
for(int i=1,j=a;i<=b;i++,j--)
{
res=(LL)res*j%p;
res=(LL)res*qmi(i,p-2,p)%p;
}
return res;
}
int lucas(LL a,LL b,int p)
{
if(a<p&&b<p) return C(a,b,p);
return (LL)C(a%p,b%p,p)*lucas(a/p,b/p,p)%p;
}
int main()
{
int n;
cin>>n;
while(n--)
{
LL a,b;
int p;
cin>>a>>b>>p;
printf("%lld\n",(LL)lucas(a,b,p));
}
return 0;
}
利用卢克斯定理,这里就不详讲了
题目:
输入 a,b,求 Cba 的值。
注意结果可能很大,需要使用高精度计算。
输入格式
共一行,包含两个整数 a 和 b。
输出格式
共一行,输出 Cba 的值。
数据范围
1≤b≤a≤5000
输入样例
5 3
输出样例
10
老规矩,先给代码
#include<algorithm>
#include<iostream>
#include<vector>
using namespace std;
const int N=5010;
int prime[N],cnt;
int sum[N];
bool st[N];
void get_prime(int n)
{
for(int i=2;i<=n;i++)
{
if(!st[i])
{
prime[cnt++]=i;
}
for(int j=0;prime[j]<=n/i;j++)
{
st[prime[j]*i]=true;
if(i%prime[j]==0) break;
}
}
}
int get(int n,int p)
{
int res=0;
while(n)
{
res+=n/p;
n/=p;
}
return res;
}
vector<int> mul(vector<int> a,const int b)
{
vector<int> c;
int t=0;
for(int i=0;i<a.size();i++)
{
t+=a[i]*b;
c.push_back(t%10);
t/=10;
}
while(t)
{
c.push_back(t%10);
t/=10;
}
return c;
}
int main()
{
int a,b;
cin>>a>>b;
get_prime(a);
for(int i=0;i<cnt;i++)
{
int p=prime[i];
sum[i]=get(a,p)-get(b,p)-get(a-b,p);
}
vector<int> res;
res.push_back(1);
for(int i=0;i<cnt;i++)
{
for(int j=0;j<sum[i];j++)
{
res=mul(res,prime[i]);
}
}
for(int i=res.size()-1;i>=0;i--) printf("%d",res[i]);
return 0;
}
这里用到高精度和筛质数的办法,不懂的小伙伴可以翻看相对应的博客