双指针算法|判断有效的三角形个数

本文介绍了一种优化方法,通过先对边长数组排序,然后利用指针移动技巧减少判断次数,判断有效三角形的数量,避免了传统三层循环的低效。这种方法基于固定i和r,移动l,相当于普通枚举的逆向过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

判断有效三角形的个数

在这里插入图片描述

基本思想

  • 因为判断三边能不能构成三角形,要任意两边都大于第三边,如果不知道边的大小关系则要判断三次。但是如果知道了边的大小关系只需要最大的一个边 小于另外两个边之和就好了。 就只需要判断一次。所以我们应该对数组进行排序!
  • 一般的做法是 三层循环暴力枚举,我们发现固定最后一个指针的时候会有意想不到的性质
    在这里插入图片描述
  • 当 a[l] + a[r] > a[i] 时, 因为a[l]在变大所以 l 到 r -1 的位置都满足条件。 有 r - 1 -l +1 = r - l 个 移动 r指针 r–
  • 当a[l] + a[r] <= a[i]时,因为不满足条件,我们需要移动l指针,直到满足条件位置

为何这种做法是正确的?

因为我们固定i,然后再固定r ,然后移动 l 本质相当于 普通做法的倒着的枚举

完整代码

 int triangleNumber(vector<int>& nums) {
        int n = nums.size();
        sort(nums.begin(),nums.end());
   
        int count = 0;
        for(int i = n-1; i >= 2; i--)
        {
             int l = 0;
            int r = i - 1;
            while( l < r)
            {
                if(nums[l] + nums[r]> nums[i]){
                    count += r - l;
                    r--;
                }else{
                    l++;
                }
               
            }
        }
        return count;

    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值