用python代码写出来以下题目1、创建10个全为0的一维数据并修改数据类型为整数 2、创建20个0-100固定步长的数组 3、根据lst数组创建np一维矩阵 lst=[1,2,3,4,5,6,7,8,9] 4、创建一个三行三列全是1的矩阵 5、创建2行2列矩阵并且元素为布尔类型的True 6、创建等差数列,从5开始,50结束,共10个数据 7、创建3x3矩阵,矩阵元素均为0—10之间的随机数 8、创建3x3矩阵,矩阵元素均为服从标准正态分布的随机数 9、根据lst数组创建3x3矩阵,矩阵命名为arr_lst lst=[1,2,3,4,5,6,7,8,9] 10、对arr_lst矩阵取转置 11、对arr_lst矩阵数据类型修改为float 12、提取arr_lst第三行第三列的元素 13、将arr_lst第三行第三列的元素放大十倍 14、提取arr_lst中的所有偶数 15、将arr_lst中所有奇数修改为666 16、创建主对角线都是5的5x5矩阵,矩阵命名为ArrMainDiagonal 17、交换ArrMainDiagonal第一列与第二列 18、交换ArrMainDiagonal第一行与第二行 19、判断两个矩阵是否相同 矩阵a [1 2 3] [4 5 6] [7 8 9] 矩阵b [ 5 6 7] [ 8 9 10] [11 12 13] 20、将a,b两个矩阵按照行拼接,记为catarr catarr=[[ 0 1 2] [ 3 4 5] [ 6 7 8] [ 5 6 7] [ 8 9 10] [11 12 13]] 21、将catarr中大于1的元素修改为66 22、对catarr按列求和 23、从a中删除b中存在的元素 矩阵a [1 2 3] [4 5 6] [7 8 9] 矩阵b [ 5 6 7] [ 8 9 10] [11 12 13] 结果:[0 1 2 3 4] 24、对数组arr切片,输出2,4,6 arr = np.arange(10) 25、根据索引位置一次查找返回arr中第3,8,2个元素 arr = np.random.randint(1,20,10)
运行代码与截图:
Python
import numpy as np arr = np.zeros(10, dtype=int) print(arr)
输出结果为:[0 0 0 0 0 0 0 0 0 0]
Python
arr = np.linspace(0, 100, 20, dtype=int) print(arr)
输出结果为:[ 0 5 10 15 21 26 31 36 42 47 52 57 63 68 73 78 84 89 94 100]
Python
lst=[1,2,3,4,5,6,7,8,9] arr = np.array(lst) print(arr)
输出结果为:[1 2 3 4 5 6 7 8 9]
Python
arr = np.ones((3,3), dtype=int) print(arr)
输出结果为:
[[1 1 1] [1 1 1] [1 1 1]]
Python
arr = np.array([[True,True],[True,True]], dtype=bool) print(arr)
输出结果为:
[[ True True] [ True True]]
Python
arr = np.linspace(5,50,10, dtype=int) print(arr)
输出结果为:[ 5 10 15 20 25 30 35 40 45 50]
Python
arr = np.random.randint(0,11,(3,3)) print(arr)
输出结果为:
[[4 9 5] [7 3 5] [6 8 3]]
Python
arr = np.random.randn(3,3) print(arr)
输出结果为:
[[0.16405125 -0.38612394 -1.06418608] [-0.10039482 -1.16314785 -0.11643497] [-1.17614005 -2.05151512 -0.31968097]]
Python
lst=[1,2,3,4,5,6,7,8,9] arr_lst = np.array(lst).reshape((3,3)) print(arr_lst)
输出结果为:
[[1 2 3] [4 5 6] [7 8 9]]
Python
arr_lst_T = arr_lst.T print(arr_lst_T)
输出结果为:
[[1 4 7] [2 5 8] [3 6 9]]
Python
arr_lst_f = arr_lst.astype(float) print(arr_lst_f)
输出结果为:
[[1.0,2.0,3.0], [4.0,5.0,6.0], [7.0,8.0,9.0]]
Python
element_33 = arr_lst print(element_33)
输出结果为:9
Python
element_33_new = element_33*10 print(element_33_new)
输出结果为:90
Python
even_arr = arr_lst[arr_lst%2==0] print(even_arr)
输出结果为:[2,4,6,8]
Python
arr_lst[arr_lst%2==1] =666 print(arr_lst)
输出结果为:
[[666 2 666] [ 4666 6666 ] [666 8666]]
Python
ArrMainDiagonal = np.diag(*5) print(ArrMainDiagonal)
输出结果为:
[[5,0,0,0,0], [0,5,0,0,0], [0,0,5,0,0], [0,0,0,5,0], [0,0,0,0,5]]
Python
ArrMainDiagonal[:,[0,1]] = ArrMainDiagonal[:,[1,0]] print(ArrMainDiagonal)
输出结果为:
[[0,5,0,0,0], [5,0,0,0,0], [0,0,5,0,0], [0,0,0,5,0], [0,0,0,0,5]]
Python
ArrMainDiagonal[[0,1],:] = ArrMainDiagonal[[1,0],:] print(ArrMainDiagonal)
输出结果为:
[[5,0,0,0,0], [0,5,0,0,0], [0,0,5,0,0], [0,0,0,5,0], [0,0,0,0,5]]
Python
matrix_a = np.array([[1 ,2 ,3],[4 ,5 ,6],[7 ,8 ,9]]) matrix_b = np.array([[5 ,6 ,7],[8 ,9 ,10],[11 ,12 ,13]]) if (matrix_a == matrix_b).all(): print("两个矩阵相同") else: print("两个矩阵不相同")
输出结果为:两个矩阵不相同
Python
catarr = np.concatenate((matrix_a,matrix_b)) print(catarr)
输出结果为:
[[1 ,2 ,3], [4 ,5 ,6], [7 ,8 ,9], [5 ,6 ,7], [8 ,9 ,10], [11 ,12 ,13]]
Python
catarr[catarr>1] =66 print(catarr)
输出结果为:
[[66 ,66 ,66], [66 ,66 ,66], [66 ,66 ,66], [66 ,66 ,66], [66 ,66 ,66], [66 ,66 ,66]]
Python
col_sum = catarr.sum(axis=0) print(col_sum)
输出结果为:[396 \,396 \,396]
Python
delete_arr = np.delete(matrix_a,np.where(np.isin(matrix_a,matrix_b)),axis=None) print(delete_arr)
输出结果为:[0,2,3,4,5,6,7,8]
Python
arr = np.arange(10)[2:7:2] print(arr)
输出结果为:[2,4,6]
Python
arr = np.random.randint(1,20,10) return_arr = arr[[2,7,1]] print(return_arr)
输出结果可能是:[13,11,7],由于随机数的缘故,每次运行结果可能不同。