3439 ST表模版

题目描述

给定一个长度为 N 的数列,和 M 次询问,求出每一次询问的区间内数字的最大值。

输入

第一行包含两个整数 N,M,分别表示数列的长度和询问的个数。

第二行包含 N 个整数(记为 ai),依次表示数列的第 i 项。

接下来 M 行,每行包含两个整数 li,ri,表示查询的区间为 [li,ri]。

输出

输出包含 M 行,每行一个整数,依次表示每一次询问的结果。

样例输入1

8 8
9 3 1 7 5 6 0 8
1 6
1 5
2 7
2 6
1 8
4 8
3 7
1 8

样例输出1

9
9
7
7
9
8
7
9

提示/说明

对于 30% 的数据,满足 1≤N,M≤10。

对于 70% 的数据,满足 1≤N,M≤105。

对于 100% 的数据,满足 1≤N≤105,1≤M≤2×106,ai∈[0,109],1≤li≤ri≤N。

标签

普及+/提高 其他 线段树 ST表,稀疏表 倍增

分析

本题是一个求区间最值问题的ST表模板题

先初始化dp,再用在线算法计算每一对L,R的区间最大值结果

#include<iostream>  
#include<cmath>  
using namespace std;  
  
// 定义数组的最大长度  
#define MAX 2000001  
  
// 定义动态规划数组,dp[i][j] 表示从i开始,长度为2^j的区间的最大值  
int n,m,dp[MAX][30],a[MAX];  
  
//ST表求区间最值问题,本题求最大值 
int main(){  
    cin.tie();  
    cout.tie();  
    cin>>n>>m;    
    for(int i=1;i<=n;i++){  
        cin>>a[i];  
    }  
  	// 初始化dp数组,单个元素的区间最大值就是它自己  
    for(int i=1;i<=n;i++){  
        dp[i][0]=a[i];  
    }  
  
    // 开始填充dp数组,j是区间的指数,表示2^j的长度  
    for(int j=1; (1<<j) <= n; j++){ // 这里的(1<<j)相当于pow(2,j),代表2的j次方,位运算更快  
        for(int i=1; i+(1<<j)-1 <= n; i++){ // 确保区间在数组范围内  
            // dp[i][j] 是由两个长度为2^(j-1)的区间合并而来,取这两个区间的最大值  
            dp[i][j]=max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);  
        }  
    }  
  
    // 开始处理m次查询  
    //在线算法,随输入输出 
    while(m--){  
        int l,r,ans;  
        cin>>l>>r;  
  
        // 查找能覆盖区间[l,r]的最小的2^k(k为整数),使得2^k<=r-l+1  
        int k=log2(r-l+1);  
  
        // 区间[l,r]被拆分为两个区间:[l, l+2^k-1]和[r-2^k+1, r]  
        // 取这两个区间的最大值作为[l,r]的最大值  
        ans=max(dp[l][k],dp[r-(1<<k)+1][k]);  
        cout<<ans<<'\n';  
    }  
  	return 0;  
}
//本文为张.tiger.予诺原创,请不要抄袭,抄袭==欺骗自己

  • 7
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
ST是一种用于快速查询区间最值的数据结构。它的核心思想是对区间进行预处理,将区间内的最值信息存储在一个二维数组中,然后利用这个数组进行查询。以下是一个求最大值的ST模板代码: ``` const int MAXN = 100005; const int MAXLOGN = 20; int a[MAXN]; int st[MAXN][MAXLOGN]; void init(int n) { for (int i = 1; i <= n; i++) { st[i][0] = a[i]; } for (int j = 1; (1 << j) <= n; j++) { for (int i = 1; i + (1 << j) - 1 <= n; i++) { st[i][j] = max(st[i][j-1], st[i+(1<<(j-1))][j-1]); } } } int query(int l, int r) { int k = log2(r-l+1); // k为最大的2的幂次方,使得2^k <= r-l+1 return max(st[l][k], st[r-(1<<k)+1][k]); } int main() { int n, q; cin >> n >> q; for (int i = 1; i <= n; i++) { cin >> a[i]; } init(n); while (q--) { int l, r; cin >> l >> r; cout << query(l, r) << endl; } return 0; } ``` 这段代码中,init函数用于初始化ST,query函数用于查询区间最大值。具体来说,init函数的实现如下: 1. 将a[i]的值存储到st[i][0]中,示区间[i,i]的最大值为a[i]。 2. 对于每个j,计算区间[i,i+2^j-1]的最大值,存储在st[i][j]中。可以发现,区间[i,i+2^j-1]可以拆分为两个长度为2^(j-1)的子区间,即区间[i,i+2^(j-1)-1]和区间[i+2^(j-1),i+2^j-1]。因此,区间[i,i+2^j-1]的最大值等于区间[i,i+2^(j-1)-1]的最大值和区间[i+2^(j-1),i+2^j-1]的最大值中较大的一个。 query函数的实现也比较简单,首先计算k,然后查询区间[l,r]的最大值,等价于查询区间[l,l+2^k-1]的最大值和区间[r-2^k+1,r]的最大值中较大的一个。 求最小值的ST模板代码与求最大值的类似,只需要将max改为min即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值