手势数据集

文章介绍了使用OpenCV采集的手势数据集,包含42660张256阶灰度图,分为训练集和测试集,用于识别0到9的手势。数据集基于MNIST构建,图片大小为28*28,以CSV格式存储。通过卷积神经网络进行监督学习训练,实现手势识别功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

该手势数据集为自建数据集,利用 OpenCV 软件库调用电脑内置摄像头拍摄采集手势数据,总共预定义了 10 种静态手势,如图所示,分别表示数字 0 到 9,在日常生活中较为常见,适合用于实际手势识别系统的应用需求。

自建数据集中共有 42660 张图片,其中训练集有 36080 张,测试集有 6580 张,以 256 阶灰度图格式存储,下图为手势 5 的 256 阶灰度图及像素数据示例。

256 阶灰度图能够提供更多的颜色深度和灰度级别,从而更好地反映图像中各个区域的差异,使用二值图像可能会存在特征提取的过于简单或者过度降噪的问题,从而导致模型的性能下降。因此,使用 256 阶灰度图像相较于二值图像有更强的信息表达能力,在训练和测试卷积神经网络时具有更多的优势。

该数据集是按照 mnist 数据集构建的,每张图片大小为 28*28,图片以csv格式存储,第一列为手势标签(0~9),后面 784 列为图片像素值,如下图所示。

后续利用 Python 读取数据并进行处理,通过卷积神经网络训练数据集,从而实现对 10 个手势的识别。卷积神经网络是一种监督学习算法,需要大量有标签的数据来训练模型,帮助其学习更好的特征表示以提高其对未知数据的预测能力。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值