【模板】树状数组

一、浅析数据结构之用处和高级数据结构之特性

数据结构者,谓之数据之关系。单论数据特性,也不过是数据之间的存储方式罢。但要说更深层次之作用,是运用其存储之特性,建立数学之模型,更方便地才处理数据尔

以上是鲁迅同志说的(鲁迅:���exm???),其实一切的数据结构不过就是一种用于处理数据的、成熟的、合理的结构封装。较低级的数据结构不会支持什么操作,仅是维护自身的存储秩序;而高级数据结构则可以支持许多操作——其实也不过是维护自身数据的秩序而已,只不过在维护其自身秩序的同时,由于其本身结构复杂且特点鲜明,所以会产生许多很优化的算法。 (鲁迅:看在你讲得这么好饶了你!)

而今天我们主要介绍有关 RMQ、RSQ 问题的、较为基础的高级数据结构。

二、先来介绍分块思想吧

(一)基本性质与证明

其实从本质上来讲,分快更像是一种思想。分块,顾名思义,就是将一个区间分成几块,然后对于每个询问,整合一个或者多个甚至全部区间的信息。但是在这种整合不是随便整合,必须要有技巧、有目的地整合,才会减小时间复杂度。

先看一道例题:

现在你有一个长度为 �n 的序列,有 �m 个操作:

1.修改某位置的元素的值。

2.将一段区间的元素加上或减去一个值。

3.求一段区间的元素的最大值。

�,�≤50000n,m≤50000。

让我们考虑分块: 首先第一步,进行区间划分,在这一步我们考虑将整个序列划分成 �n​ 块,这可以使得其总查询时间最快

证明:

对于搜查整个序列中的一段区间,设这段区间内的完整分块块数是 �C 块,每一段均匀的分块都 �S 个元素,那么这一段区间的最复杂形式为:有 �C 个完整区间,并且闭区间 [�l,�r] 还在两端包括有不完整的分好的块:

——|—【————|——————|——————|————】—|————

上图中【】表示区间,| 与 | 之间表示分好的均匀块(博主不知道怎么画精美的图啦)

我们可以发现该区间内有 �C 段完整区间,22 段不完整区间;而同时,不完整区间的元素数量之和,绝对小于等于 2�2S;那么我们对于这一个区间而言,共需要进行最多 �+2�C+2S 次查询——因为一个分块可以供给块内所有元素的信息。那么查询的时间复杂度便是 �(�+2�)O(C+2S)。从渐进意义上来讲,时间复杂度为 �(�+�)O(C+S),渐进整合后便是 �(max⁡{�,�})O(max{C,S})(渐进的时间复杂度,可以认为等于对数值改变影响最大的数值的复杂度)。

在知道这一点之后,我们可以这么想:

因为

�×�+2�≥�−�+1C×S+2S≥r−l+1

所以我们可以近似地看做有

�×�=�−�+1C×S=r−l+1

所以在同一区间内 �×�C×S 之积可以看作是个定值。那么当且仅当 �=�S=C 时,才会使得 max⁡{�,�}max{C,S} 最小,此时 �=�=�S=C=n​。

(二)分块的运行机制

首先就是确立所分的块与被包含元素之间的关系,我们在此用一个 belong 数组记录每个点与所分的块之间的关系,同时进行区间记录。

	int n,a[MAXN],belong[MAXN];
	int S,C=0,st[MAXN],ed[MAXN];//sum[MAXN],ma_x[MAXN],mi_n[MAXN]; 
	/*
	n:元素个数,a[]:元素,belong[]:每个元素所属的块的编号 
	S:每个块有多少元素 C:分块个数 st/ed:每个块的左边界、右边界 
	sum[MAXN]/ma_x[MAXN]/mi_n[MAXN]用于记录区间信息 
	*/ 
	void pretreat()
	{
		S=int(sqrt(double(n)));
		for(int i=1;i<=n;i+=S){
			st[++C]=i;
			ed[C]=min(i+S-1,n);//有可能会越界(sqrt必然有精度误差) 
		}
		for(int i=1;i<=C;i++)
			for(int j=st[i];j<=ed[i];j++)
				{
				belong[j]=i;//初始化belong 
				/*
    //区间操作  sum[i]+=a[j];
				ma_x[i]=max(ma_x[i],j);
				*/
				}
	}

其次便是区间修改 & 单点修改:由于区间操作只能针对于某个已经被分好的块,所以对于某些不完整区间的改动,需要进行单点修改。

对于区间修改,还有一点,为了帮助我们对区间讯息的整合,所以会引进一个delta mark,记录某个区间整体的变化情况。

注意:当且仅当一个块被统一修改,才会改变这个块的 delta 值。

//区间单点修改 ,此处以求区间和为例 
	inline void updata_single(int x,int k)
	{
		a[x]+=k;
		sum[belong[x]]+=k;
	}
	
	//区间修改,同上
	int delta[MAXN];//用于记录一个!完整!区间的修改 
	void updata_range(int x,int y,int k)
	{
	    int l=belong[x],r=belong[y];
		if(l==r&&st[l]==x&&st[r]==y)
		{delta[l]=k; return ;}//ma_x[]
		//这个if纯粹是为了减少底下的运算,毕竟判断只有O(1) qwq
		else
		{
			for(int i=x;i<=ed[l];i++)
				updata_single(i,k);//如果不是完整区间,就单点修改 
			if(st[l]>x&&st[r]<y)return ; 
			//如果查询区间被某个块完全包含且不相等,
			//不需要进行以下操作 
			for(int i=st[r];i<=y;i++)
				updata_single(i,k);
			//如果所查询区间与块有交集且不想等
			//不需进行以下操作 
			for(int i=l+1;i<r;i++)
				delta[i]+=k;;
		}
	}
	

紧接着就是区间询问了,此时我们的 delta 就派上用场啦!

	int query(int x,int y)//依然为区间和 
	{
		int l=belong[x],r=belong[y],ans=0;
		if(l==r){
			for(int i=x;i<=y;i++)
				ans+=a[i]+delta[belong[i]];
		}
		else{
			for(int i=x;i<=ed[l];i++)
				ans+=a[i]+delta[belong[i]];
			for(int i=l+1;i<r;i++)
				ans+=sum[i]+delta[i]*(ed[i]-st[i]+1);
				//对于每个区间的O(1)运算 
			for(int i=st[r];i<=y;i++)
				ans+=a[i]+delta[belong[i]];
		}
		return ans;
	}

我们会发现,对于一个分块程序来说,期望的时间总复杂度为:�(��)O(mn​),对于 5000050000 来说完全能跑开。

三、树状数组浅谈

(一)关于树状数组的正确释义

首先要知道一个很重要的点:

树状数组用的是树结构的思想(也就是树型逻辑结构),而不是真正的“树形结构”,初学者不要被强行拉入坑啊(换句话说,从某种意义上,树状数组跟树其实——————没有特别大的关系)。

那它为什么被叫作树状数组呢?

(二)树状数组的存储特点

首先解释,树状数组支持的操作:

1、区间和、区间异或和、区间乘积和 RMQ(显然,支持的操作都具有交换律,这也算是树状数组的一大特性吧

2、单点修改(朴素的树状数组结构不支持区间修改,当然也可以普及成区间修改结构但我们先不提

那为什么不直接用前缀和或者差分数组呢?

我们知道,前缀和数组的维护是 �(�)O(n) 的,查询、修改是 �(1)O(1) 的。然而,树状数组的维护却是 �(log⁡�)O(logn) 的。并且查询、修改也是 �(1)O(1) 的——这便是一个很大的优化。

等等,log⁡�logn?有点眼熟诶。再提示提示,这个 log⁡log 实际意义其实是 log⁡log 以 22 为底———————

对,没猜错,就是二进制表示法,也就是二叉树上数据之间的特殊逻辑关系!

实际上,对于树状数组的每一个 i,其实际意义应该为:

算上其本身的讯息,总共存储了 2�2k 个元素的信息,其中 �k 表示 �i 在二进制下,末尾零的个数,同时也可以表示最小的含 1 位的二进制权值——换句话讲,2�2k 即可表示成:对于每个二进制意义下的 �i,从最末位数 �+1k+1 位,保留这 �+1k+1 位并删除 �+1k+1 位以左的所有数位上的数,留下的新二进制数的实际大小。

而对于每一个x的最低含一位,即上文中的 2�2k,可以借助一个 lowbitlowbit 函数实现——而这个的实现方式是很玄学的:

	inline int lowbit(int x)
	{
		//return (x^(x-1))&x;
		return x&(-x);
	}

上文代码中给了两种不同的实现方式,而这两种中,有一种是通过数学+二进制的方式得出,另一种则是通过计算机编码特性得出——我实在懒得证了。

(三)树状数组的建立、维护和查询

建立:此处拿求区间和为样例

void build() 
{
for(int i=1;i<=n;i++)       
{cin>>a[i];tree[i]=i;}//一开始先赋初值
}

维护:看注释

void updata(int x,int k)
{
	for(;x<=n;x+=lowbit(x))
		tree[x]+=k;
//此处可以如是想:lowbit取出的是当前x的最低含一位
//权值位,相加后等于向高位进位,并且已有的数位永远为零
//这就可以推出:每当x值+=lowbit(x)时,都会有进位,并且
//进位后的新x值一定包含所有原来的x值,也就是说,这一步
//充分地向上进位,达到区间和更新的目的。 
}

询问:从大到小枚举,比较方便。

	long long query(int x){
		int ans;
		for(;x;x-=lowbit(x))
			ans=ans+tree[x];
		return ans;
	}

整合:相减即可。

    inline long long my_union(int x,int y)
	{
		return query(x)-query(y-1);
     }

因此操作的复杂度均为单次 �(log⁡�)O(logn)。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值