1. 背景介绍
1.1. 大语言模型 (LLM) 的兴起
近年来,随着深度学习技术的飞速发展,大语言模型 (LLM) 逐渐成为人工智能领域的研究热点。LLM 拥有强大的语言理解和生成能力,在机器翻译、文本摘要、对话系统等方面展现出巨大的潜力。然而,LLM 的训练和推理过程需要消耗大量的计算资源,限制了其在实际应用中的推广。
1.2. 计算性能瓶颈
LLM 的计算性能瓶颈主要体现在以下几个方面:
- 模型规模庞大: LLM 通常包含数十亿甚至数千亿个参数,需要大量的内存和存储空间。
- 计算复杂度高: LLM 的训练和推理过程涉及大量的矩阵运算和张量操作,对计算能力要求极高。
- 数据量巨大: LLM 的训练需要海量的文本数据,数据读取和预处理过程也消耗大量时间。
1.3. 硬件加速的必要性
为了解决 LLM 的计算性能瓶颈,硬件加速技术成为必不可少的解决方案。通过使用专门的硬件加速器,可以显著提升 LLM 的训练和推理速度,降低计算成本,并拓展其应用范围。