1. 背景介绍
1.1 人工智能与强化学习的崛起
近年来,人工智能(AI)技术取得了突飞猛进的发展,而强化学习(Reinforcement Learning,RL)作为AI领域的一个重要分支,也逐渐受到越来越多的关注。强化学习是一种通过与环境交互来学习最优行为策略的机器学习方法。与其他机器学习方法不同,强化学习不依赖于预先标记的数据集,而是通过试错和奖励机制来不断优化其行为策略。
1.2 深度学习的引入
深度学习(Deep Learning,DL)的出现为强化学习带来了新的突破。深度学习利用多层神经网络来学习复杂的非线性函数,能够有效地处理高维数据,例如图像、语音和文本。将深度学习与强化学习相结合,便诞生了深度强化学习(Deep Reinforcement Learning,DRL),它能够处理更加复杂的任务,并在游戏、机器人控制等领域取得了令人瞩目的成果。
1.3 游戏与控制系统中的应用
游戏和控制系统是深度强化学习的重要应用领域。在游戏领域,深度强化学习已被用于开发能够在Atari游戏、围棋、星际争霸等复杂游戏中战胜人类玩家的AI程序。在控制系统领域,深度强化学习可用于优化机器人控制、自动驾驶、工业自动