1.背景介绍
在人工智能的众多领域中,强化学习近年来显得尤为引人瞩目。强化学习是一种机器学习的方法,它使得智能系统可以通过与环境的互动自我学习并改进其行为。在这个过程中,系统试图找到一套策略,使得在一段时间内获得的回报最大。其中,Q-learning是一种基本而又重要的强化学习算法。
然而,传统的Q-learning算法由于其表格型的表示方法,限制了其在大规模或者连续的状态空间中的应用。与此同时,深度学习在处理高维度、大规模数据上的优势使得人们开始尝试将其与Q-learning结合起来,以此来解决传统Q-learning算法在这些问题上的瓶颈,于是深度Q-learning算法应运而生。
深度Q-learning算法在很多领域都有广泛的应用,其中航空航天领域由于其对于决策精度和安全性的极高要求,使得深度Q-learning算法在此领域的应用显得尤为重要。
2.核心概念与联系
2.1 Q-Learning
Q-learning是一种无模型的强化学习算法。在这种算法中,智能体(agent)不需要知道环境的具体模型,而是通过与环境的互动来学习行动的价值,即Q值。Q值实际上是一个函数,它接受一个状态和一个动作作为输入,输出的是在该状态下执行该动作所能获得的预期回报。Q-learning的目标就是要找到一套策略,