深度 Qlearning:在航空航天中的应用

本文介绍了深度Q-learning在航空航天领域的应用,结合Q-learning、深度学习的基本概念,阐述了深度Q-learning算法的工作原理和操作步骤,包括初始化、与环境互动、存储经验、学习和重复。深度Q-learning通过神经网络解决传统Q-learning在大规模或连续状态空间中的问题,适用于控制无人机飞行、卫星轨道控制等。文章还探讨了算法的未来发展趋势和面临的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.背景介绍

在人工智能的众多领域中,强化学习近年来显得尤为引人瞩目。强化学习是一种机器学习的方法,它使得智能系统可以通过与环境的互动自我学习并改进其行为。在这个过程中,系统试图找到一套策略,使得在一段时间内获得的回报最大。其中,Q-learning是一种基本而又重要的强化学习算法。

然而,传统的Q-learning算法由于其表格型的表示方法,限制了其在大规模或者连续的状态空间中的应用。与此同时,深度学习在处理高维度、大规模数据上的优势使得人们开始尝试将其与Q-learning结合起来,以此来解决传统Q-learning算法在这些问题上的瓶颈,于是深度Q-learning算法应运而生。

深度Q-learning算法在很多领域都有广泛的应用,其中航空航天领域由于其对于决策精度和安全性的极高要求,使得深度Q-learning算法在此领域的应用显得尤为重要。

2.核心概念与联系

2.1 Q-Learning

Q-learning是一种无模型的强化学习算法。在这种算法中,智能体(agent)不需要知道环境的具体模型,而是通过与环境的互动来学习行动的价值,即Q值。Q值实际上是一个函数,它接受一个状态和一个动作作为输入,输出的是在该状态下执行该动作所能获得的预期回报。Q-learning的目标就是要找到一套策略,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值