大语言模型应用指南:越狱攻击与数据投毒
作者:禅与计算机程序设计艺术
1. 背景介绍
1.1 大语言模型的崛起与应用
近年来,随着深度学习技术的飞速发展,大语言模型(LLM)逐渐成为人工智能领域的研究热点。LLM是指基于海量文本数据训练的深度学习模型,拥有强大的文本生成、理解、翻译等能力,已广泛应用于智能客服、机器翻译、文本摘要等领域。
1.2 LLM的安全问题日益凸显
然而,随着LLM应用的普及,其安全问题也日益凸显。攻击者可以利用LLM的漏洞,进行越狱攻击、数据投毒等恶意行为,对用户隐私、数据安全造成严重威胁。
1.3 本文的意义和目的
本文旨在深入探讨LLM的越狱攻击和数据投毒问题,分析其原理、攻击手段以及防御策略,帮助读者了解LLM安全风险,提升安全防护意识和能力。
2. 核心概念与联系
2.1 越狱攻击
2.1.1 定义
越狱攻击是指攻击者通过精心构造的输入,诱导LLM生成违背其设计意图或安全策略的输出,例如生成带有偏见