一切皆是映射:AI Q-learning折扣因子如何选择
1.背景介绍
1.1 强化学习概述
强化学习(Reinforcement Learning, RL)是机器学习的一个重要分支,其目标是让智能体(Agent)通过与环境的交互来学习最优策略,从而获得最大的累积奖励。与监督学习和非监督学习不同,强化学习并没有事先准备好的训练数据,而是通过探索(Exploration)和利用(Exploitation)的平衡来不断优化策略。
1.2 Q-learning 算法
Q-learning 是强化学习中一种非常经典和广泛使用的无模型(model-free)算法。它通过学习动作-状态值函数 Q(s,a) 来寻找最优策略。其中 s 表示状态,a 表示动作。Q 函数可以理解为在状态 s 下采取动作 a 的长期期望回报。
Q-learning 的核心思想是通过 Bellman 方程来迭代更新 Q 值:
$$Q(s_t,a_t) \leftarrow Q(s_t,a_t) + \alpha [r_t + \gamma \max_{a}Q(s_{t+1},a) - Q(s_t,a_t)]$$
其中:
- $s_t$: t 时刻的状态
- $a_t$: t 时刻采取的动作
- $r_t$: t 时刻获得的即时奖励
- $\alpha$: 学习率
- $\gamma$