深度 Q-learning:学习率与折扣因子选择
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:
深度学习、Q-learning、强化学习、学习率、折扣因子、参数选择、性能优化
1. 背景介绍
1.1 问题的由来
随着深度学习技术的快速发展,强化学习(Reinforcement Learning, RL)在众多领域展现出巨大的潜力。Q-learning作为强化学习的一种经典算法,在游戏、机器人控制、推荐系统等领域有着广泛的应用。然而,在实际应用中,学习率和折扣因子作为Q-learning算法的关键参数,其选择对算法的性能有着至关重要的影响。因此,如何有效地选择合适的参数成为了一个亟待解决的问题。
1.2 研究现状
近年来,研究人员针对Q-learning算法的参数选择进行了大量的研究,主要方法包括:
- 经验法则:根据经验或者实验结果,给出学习率和折扣因子的参考值。
- 自动调整策略:使用自适应方法,在训练过程中根据性