深度 Qlearning:学习率与折扣因子选择

深度 Q-learning:学习率与折扣因子选择

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

关键词:

深度学习、Q-learning、强化学习、学习率、折扣因子、参数选择、性能优化

1. 背景介绍

1.1 问题的由来

随着深度学习技术的快速发展,强化学习(Reinforcement Learning, RL)在众多领域展现出巨大的潜力。Q-learning作为强化学习的一种经典算法,在游戏、机器人控制、推荐系统等领域有着广泛的应用。然而,在实际应用中,学习率和折扣因子作为Q-learning算法的关键参数,其选择对算法的性能有着至关重要的影响。因此,如何有效地选择合适的参数成为了一个亟待解决的问题。

1.2 研究现状

近年来,研究人员针对Q-learning算法的参数选择进行了大量的研究,主要方法包括:

  1. 经验法则:根据经验或者实验结果,给出学习率和折扣因子的参考值。
  2. 自动调整策略:使用自适应方法,在训练过程中根据性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值