从零开始大模型开发与微调:字符(非单词)文本的处理
1. 背景介绍
1.1 问题的由来
在自然语言处理领域,文本数据通常被划分为单词级进行处理。然而,对于某些应用,例如音译转换、字符级别的文本生成、或者在多语言环境下处理时,直接处理字符而非单词可以带来更高的灵活性和更精确的模型训练。这就引出了对基于字符的文本处理的需求,以及如何有效地开发和微调大规模语言模型以适应这一需求。
1.2 研究现状
现有的大规模语言模型通常针对单词级任务进行了优化,但在处理字符级任务时,面临的主要挑战包括但不限于:模型训练数据的稀疏性、字符级任务对模型上下文敏感性的增加以及训练数据的不平衡问题。为了解决这些问题,研究者们开始探索将大规模语言模型用于字符级文本处理的方法,包括改进数据预处理、定制模型结构以及引入特定的微调策略。
1.3 研究意义
开发和微调基于字符的语言模型对于提升特定任务的表现具有重要意义,例如在多语言文本处理、跨语言翻译、生成特定风格的文本或增强语言模型在文本生成、问答等任务上的表现。此外,字符级模型还可以用于文本纠错、文本自动生成等任务,提供更细粒度的文本处理能力。