大语言模型应用指南:从人工智能的起源到大语言模型

1. 背景介绍

1.1 人工智能的起源与发展

人工智能(Artificial Intelligence, AI)的起源可以追溯到20世纪50年代,图灵测试的提出标志着人工智能的诞生。早期的人工智能研究主要集中在符号推理、专家系统等领域,取得了一定的成果。然而,由于计算能力和数据量的限制,早期的人工智能系统难以处理复杂的现实问题。

1.2 机器学习的崛起

随着计算机技术的飞速发展,机器学习(Machine Learning, ML)逐渐成为人工智能领域的主流方法。机器学习的核心思想是让计算机从数据中学习,并根据学习到的知识进行预测或决策。机器学习算法可以分为监督学习、无监督学习和强化学习等类型,并在图像识别、自然语言处理、语音识别等领域取得了显著的成功。

1.3 深度学习的突破

深度学习(Deep Learning, DL)是机器学习的一个分支,其核心是使用多层神经网络来学习数据的复杂表示。深度学习的突破得益于大规模数据集、强大的计算能力和算法的改进。深度学习在图像识别、语音识别、自然语言处理等领域取得了突破性的进展,推动了人工智能技术的快速发展。

1.4 大语言模型的诞生

大语言模型(Large Language Model, LLM࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值