1. 背景介绍
1.1 人工智能的起源与发展
人工智能(Artificial Intelligence, AI)的起源可以追溯到20世纪50年代,图灵测试的提出标志着人工智能的诞生。早期的人工智能研究主要集中在符号推理、专家系统等领域,取得了一定的成果。然而,由于计算能力和数据量的限制,早期的人工智能系统难以处理复杂的现实问题。
1.2 机器学习的崛起
随着计算机技术的飞速发展,机器学习(Machine Learning, ML)逐渐成为人工智能领域的主流方法。机器学习的核心思想是让计算机从数据中学习,并根据学习到的知识进行预测或决策。机器学习算法可以分为监督学习、无监督学习和强化学习等类型,并在图像识别、自然语言处理、语音识别等领域取得了显著的成功。
1.3 深度学习的突破
深度学习(Deep Learning, DL)是机器学习的一个分支,其核心是使用多层神经网络来学习数据的复杂表示。深度学习的突破得益于大规模数据集、强大的计算能力和算法的改进。深度学习在图像识别、语音识别、自然语言处理等领域取得了突破性的进展,推动了人工智能技术的快速发展。
1.4 大语言模型的诞生
大语言模型(Large Language Model, LLM