1. 背景介绍
1.1 AI 系统的普及与挑战
人工智能 (AI) 正迅速融入我们生活的方方面面,从自动驾驶汽车到医疗诊断,从智能家居到金融交易,AI 系统的应用日益广泛。然而,随着 AI 系统的普及,其可靠性问题也日益凸显。AI 系统的错误或失效可能导致严重后果,例如财产损失、人身伤害甚至危及生命。
1.2 可靠性问题的根源
AI 系统的可靠性问题源于其自身的复杂性和不确定性。AI 系统通常基于复杂的算法和海量数据进行训练,而这些算法和数据本身就可能存在缺陷或偏差。此外,AI 系统的运行环境也充满了不确定性,例如输入数据的变化、硬件故障以及网络攻击等。
1.3 可靠性研究的重要性
为了确保 AI 系统的可靠性,我们需要深入研究其原理和方法。可靠性研究的目标是开发出能够在各种情况下稳定、安全、高效运行的 AI 系统,并提供相应的保障措施。
2. 核心概念与联系
2.1 可靠性的定义
可靠性是指系统在特定条件下和特定时间段内完成其规定功能的能力。对于 AI 系统而言,可靠性意味着系统能够在各种情况下准确、稳定地完成其任务,例如识别图像、预测趋势、做出决策等。