从零开始大模型开发与微调:输入层—初始词向量层和位置编码器层
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
文章目录
1. 背景介绍
1.1 问题的由来
随着深度学习技术的飞速发展,自然语言处理(NLP)领域迎来了新的变革。大模型(Large Language Model,LLM)作为一种重要的NLP模型,以其强大的语义理解和生成能力,在诸多任务上取得了显著的成果。然而,大模型的开发与微调并非易事,其涉及众多复杂的技术细节。本文将深入探讨大模型开发与微调的关键环节,从输入层开始,逐步解析初始词向量层和位置编码器层的实现原理和操作步骤。
1.2 研究现状
目前,大模型的开发与微调已成为NLP领域的热点话题。众多研究机构和公司纷纷投入大量资源,致力于大模型的研发和应用。在模型结构方面,以BERT、GPT为代表的自回归模型和自编码模型取得了显著的成果。在微调方法方面,以监督学习为代表的微调范式在多数任务上均取得了优异的性能。
1.3 研究意义
深入研究大模型开发与微调的技术细节,对于推动NLP技术的