大语言模型原理基础与前沿:通过稀疏MoE扩展视觉语言模型
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
随着深度学习技术的飞速发展,大语言模型(Large Language Models,LLMs)已经成为了自然语言处理(Natural Language Processing,NLP)领域的重要工具。然而,LLMs在处理视觉信息方面却存在一定的局限性。为了解决这个问题,研究人员提出了将视觉信息与语言信息相结合的视觉语言模型(Visual Language Models,VLMs)。稀疏MoE(Mixture-of-Experts)作为一种高效的模型架构,被广泛应用于VLMs中,以提升模型的表达能力和推理能力。
1.2 研究现状
近年来,VLMs在图像描述、视觉问答、图像生成等领域取得了显著的成果。然而,传统的VLMs通常采用全连接神经网络,模型参数量庞大,计算复杂度高,难以在实际应用中部署。为了解决这个问题,稀疏MoE架构被引入到VLMs中,通过将模型分解