降维 (Dimensionality Reduction) 原理与代码实例讲解

降维 (Dimensionality Reduction) 原理与代码实例讲解

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

1. 背景介绍

1.1 问题的由来

在数据科学和机器学习领域,我们经常面临着数据的维度问题。高维数据往往意味着更多的特征,这既有利也有弊。有利的一面是,更多的特征可以提供更丰富的信息,有助于模型的训练和预测。然而,高维数据也带来了许多挑战,例如:

  • 数据稀疏:在高维空间中,许多样本可能缺乏有效的特征表示,导致数据稀疏。
  • 过拟合:模型可能会学习到数据的噪声,导致过拟合,即模型在训练集上表现良好,但在测试集或新数据上表现不佳。
  • 计算效率低下:高维数据需要更多的计算资源,导致计算效率低下。
  • 可视化困难:高维数据难以直观地表示和可视化。

为了解决这些问题,降维技术应运而生。降维技术旨在减少数据维度,同时保留尽可能多的有用信息。本文将深入探讨降维的原理、算法和应用,并提供代码实例进行讲解。

1.2 研究现状

降维技术已经发展了多年

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值