降维 (Dimensionality Reduction) 原理与代码实例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
在数据科学和机器学习领域,我们经常面临着数据的维度问题。高维数据往往意味着更多的特征,这既有利也有弊。有利的一面是,更多的特征可以提供更丰富的信息,有助于模型的训练和预测。然而,高维数据也带来了许多挑战,例如:
- 数据稀疏:在高维空间中,许多样本可能缺乏有效的特征表示,导致数据稀疏。
- 过拟合:模型可能会学习到数据的噪声,导致过拟合,即模型在训练集上表现良好,但在测试集或新数据上表现不佳。
- 计算效率低下:高维数据需要更多的计算资源,导致计算效率低下。
- 可视化困难:高维数据难以直观地表示和可视化。
为了解决这些问题,降维技术应运而生。降维技术旨在减少数据维度,同时保留尽可能多的有用信息。本文将深入探讨降维的原理、算法和应用,并提供代码实例进行讲解。
1.2 研究现状
降维技术已经发展了多年