心电图数据研究原理与方法
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:
心电图,心电信号,数据挖掘,机器学习,临床诊断,异常检测
1. 背景介绍
1.1 问题的由来
心电图(Electrocardiogram,ECG)是临床医学中一种常用的无创性检查方法,可以记录心脏在跳动过程中产生的电活动,从而分析心脏功能和诊断心血管疾病。随着医疗技术的进步和数据采集设备的普及,心电图数据量呈爆炸式增长。如何从海量心电图数据中挖掘有价值的信息,提高心血管疾病的诊断准确率,成为医学和计算机科学领域共同关注的问题。
1.2 研究现状
近年来,心电图数据研究取得了显著进展,主要研究方向包括:
- 心电信号特征提取:通过对心电信号进行时域、频域和时频域分析,提取具有诊断意义的特征参数。
- 心电信号分类:利用机器学习算法对心电信号进行分类,识别正常心电信号、异常心电信号和特定疾病类型。
- 异常心电信号检测:针对异常心电信号进行检测和识别,提高心血