一切皆是映射:深度学习模型的解释性与可理解性
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:深度学习,模型可解释性,可理解性,黑盒模型,白盒模型,模型压缩,神经网络,反向传播
1. 背景介绍
1.1 问题的由来
随着深度学习技术的飞速发展,其在图像识别、自然语言处理、语音识别等领域取得了令人瞩目的成果。然而,深度学习模型通常被描述为“黑盒”,其内部工作机制和决策过程难以被理解。这使得深度学习模型的应用面临着解释性和可理解性的挑战。
1.2 研究现状
近年来,许多研究人员致力于研究深度学习模型的解释性和可理解性。主要研究方向包括:
- 模型可视化:通过可视化模型内部参数和神经元活动,帮助理解模型的工作原理。
- 模型压缩:通过模型压缩技术,减少模型参