一切皆是映射:深度学习模型的解释性与可理解性

一切皆是映射:深度学习模型的解释性与可理解性

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

关键词:深度学习,模型可解释性,可理解性,黑盒模型,白盒模型,模型压缩,神经网络,反向传播

1. 背景介绍

1.1 问题的由来

随着深度学习技术的飞速发展,其在图像识别、自然语言处理、语音识别等领域取得了令人瞩目的成果。然而,深度学习模型通常被描述为“黑盒”,其内部工作机制和决策过程难以被理解。这使得深度学习模型的应用面临着解释性和可理解性的挑战。

1.2 研究现状

近年来,许多研究人员致力于研究深度学习模型的解释性和可理解性。主要研究方向包括:

  • 模型可视化:通过可视化模型内部参数和神经元活动,帮助理解模型的工作原理。
  • 模型压缩:通过模型压缩技术,减少模型参
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值