从零开始大模型开发与微调:从零开始学习自然语言处理的编码器
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:大模型,自然语言处理,编码器,微调,预训练,Transformer,BERT,NLP
1. 背景介绍
1.1 问题的由来
自然语言处理(NLP)作为人工智能领域的一个重要分支,近年来取得了突飞猛进的发展。随着深度学习技术的成熟,基于深度学习的大语言模型在NLP领域展现出了强大的能力。然而,如何从零开始开发与微调这些大模型,对许多研究者来说仍是一个挑战。本文旨在为广大读者提供一份从零开始学习NLP编码器开发与微调的指南,帮助大家掌握这一前沿技术。
1.2 研究现状
目前,大语言模型在NLP领域的应用已经取得了显著成果。例如,BERT、GPT-3等模型在文本分类、问答、机器翻译等任务上取得了SOTA(State-of-the-Art)的成绩。然而,大模型开发与微调仍然面临许多挑战,如计算资源需求大、数据依赖性强、模型可解释性差等。</