模型选择, 过拟合, 欠拟合, 交叉验证, 正则化, 性能指标, 机器学习
1. 背景介绍
在机器学习领域,模型选择是一个至关重要的步骤,它直接影响着模型的性能和泛化能力。模型选择是指在给定数据集的情况下,从众多候选模型中选择最适合该数据集的模型。
选择合适的模型对于机器学习任务至关重要。一个过拟合的模型可能在训练数据上表现出色,但在未见过的数据上表现糟糕,而一个欠拟合的模型则无法捕捉数据的复杂性,导致性能低下。
2. 核心概念与联系
模型选择的核心在于找到一个平衡点,既能充分拟合训练数据,又能避免过拟合,从而在未知数据上表现良好。
模型选择流程:
graph LR
A[数据预处理] --> B{模型选择}
B --> C[模型训练]
C --> D[模型评估]
D --> E{模型优化}
E --> B
核心概念:
- 过拟合 (Overfitting): 模型对训练数据拟合得太好,导致在未知数据上表现不佳。
- 欠拟合 (Underfitting): 模型过于简单