F1 Score原理与代码实例讲解

F1-Score, 评价指标, 分类模型, 精确率, 召回率, harmonic mean, 代码实例, Python

1. 背景介绍

在机器学习领域,分类模型的性能评估至关重要。常见的评估指标包括准确率、精确率、召回率等。然而,这些指标有时无法全面反映模型的性能,尤其是在数据分布不均衡的情况下。为了解决这个问题,F1-Score应运而生。F1-Score是精确率和召回率的调和平均数,它兼顾了模型的预测准确性和对所有类别样本的覆盖范围。

2. 核心概念与联系

F1-Score 作为一种综合性评价指标,它将精确率和召回率结合起来,更全面地衡量分类模型的性能。

2.1 精确率 (Precision)

精确率是指模型预测为正例的样本中,真正为正例的样本比例。

graph LR
    A[模型预测为正例] --> B(实际为正例)
    A --> C(实际为负例)
    B --> D[精确率]
    C --> E[召回率]

公式:

$$Precision = \frac{TP}{TP + FP}$$

其中:

  • TP:真阳性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值