F1-Score, 评价指标, 分类模型, 精确率, 召回率, harmonic mean, 代码实例, Python
1. 背景介绍
在机器学习领域,分类模型的性能评估至关重要。常见的评估指标包括准确率、精确率、召回率等。然而,这些指标有时无法全面反映模型的性能,尤其是在数据分布不均衡的情况下。为了解决这个问题,F1-Score应运而生。F1-Score是精确率和召回率的调和平均数,它兼顾了模型的预测准确性和对所有类别样本的覆盖范围。
2. 核心概念与联系
F1-Score 作为一种综合性评价指标,它将精确率和召回率结合起来,更全面地衡量分类模型的性能。
2.1 精确率 (Precision)
精确率是指模型预测为正例的样本中,真正为正例的样本比例。
graph LR
A[模型预测为正例] --> B(实际为正例)
A --> C(实际为负例)
B --> D[精确率]
C --> E[召回率]
公式:
$$Precision = \frac{TP}{TP + FP}$$
其中:
- TP:真阳性