- Deep Reinforcement Learning (DRL)
- Meta-Learning
- Model-Agnostic Meta-Learning (MAML)
- Few-Shot Learning
- Online Learning
- Transfer Learning
- Generalization
1. 背景介绍
在人工智能领域,强化学习(Reinforcement Learning,RL)和元学习(Meta-Learning)是两个非常活跃的研究方向。强化学习关注智能体在环境中学习行为,以最大化长期回报。元学习则关注学习如何学习,以便在新任务或环境中快速适应。深度强化学习(Deep Reinforcement Learning,DRL)结合了深度学习和强化学习,取得了显著的成功。然而,DRL模型通常需要大量的数据和计算资源,并且缺乏泛化能力。本文将探讨深度强化元学习(Deep Reinforcement Meta-Learning,DRML)的挑战和机遇,展示如何在新任务或环境中快速适应的同时,保持泛化能力。
2. 核心概念与联系
2.1 核心概念
- 强化学习(Reinforcem