1. 背景介绍
在当今信息爆炸的时代,用户面对海量的信息和产品,如何提供个性化的推荐服务成为一大挑战。大模型推荐系统凭借其强大的学习和推理能力,已经成为解决这一问题的有效手段。然而,如何有效地建模用户的行为序列,以提高推荐系统的准确性和效率,仍然是一个亟待解决的问题。
2. 核心概念与联系
2.1 核心概念
- 用户行为序列(User Behavior Sequence):用户在推荐系统中的一系列互动操作,如点击、购买、收藏等。
- 大模型(Large Model):具有庞大参数量和复杂结构的模型,能够学习和推理复杂的数据分布。
- 序列建模(Sequence Modeling):利用模型学习和预测序列数据的方法,如时间序列、文本序列等。
2.2 核心概念联系
大模型推荐系统需要建模用户的行为序列,以学习用户的偏好和兴趣,从而提供个性化的推荐。序列建模是实现这一目标的关键,它可以帮助模型学习用户行为的时序特征,提高推荐的准确性。