大模型推荐中的用户行为序列建模新方法探索

1. 背景介绍

在当今信息爆炸的时代,用户面对海量的信息和产品,如何提供个性化的推荐服务成为一大挑战。大模型推荐系统凭借其强大的学习和推理能力,已经成为解决这一问题的有效手段。然而,如何有效地建模用户的行为序列,以提高推荐系统的准确性和效率,仍然是一个亟待解决的问题。

2. 核心概念与联系

2.1 核心概念

  • 用户行为序列(User Behavior Sequence):用户在推荐系统中的一系列互动操作,如点击、购买、收藏等。
  • 大模型(Large Model):具有庞大参数量和复杂结构的模型,能够学习和推理复杂的数据分布。
  • 序列建模(Sequence Modeling):利用模型学习和预测序列数据的方法,如时间序列、文本序列等。

2.2 核心概念联系

大模型推荐系统需要建模用户的行为序列,以学习用户的偏好和兴趣,从而提供个性化的推荐。序列建模是实现这一目标的关键,它可以帮助模型学习用户行为的时序特征,提高推荐的准确性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值