大模型辅助的推荐系统多维度兴趣融合

大模型辅助的推荐系统多维度兴趣融合

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

1. 背景介绍

随着互联网的发展,海量的信息和产品让用户面临着信息过载的问题。推荐系统因此应运而生,旨在帮助用户从海量信息中发现感兴趣的内容。然而,传统的推荐系统往往只关注用户的单一兴趣维度,无法满足用户多维度的兴趣需求。大模型的出现为推荐系统带来了新的机遇,本文将探讨如何利用大模型实现推荐系统的多维度兴趣融合。

2. 核心概念与联系

2.1 核心概念

  • 大模型(Large Model):指具有数十亿乃至数千亿参数的模型,能够在广泛的领域表现出强大的泛化能力。
  • 推荐系统(Recommender System):一种信息过滤系统,旨在帮助用户发现感兴趣的内容。
  • 多维度兴趣融合(Multidimensional Interest Fusion):指综合考虑用户的多个兴趣维度,如内容、情感、时效性等,为用户提供个性化推荐。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值