大模型辅助的推荐系统多维度兴趣融合
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
随着互联网的发展,海量的信息和产品让用户面临着信息过载的问题。推荐系统因此应运而生,旨在帮助用户从海量信息中发现感兴趣的内容。然而,传统的推荐系统往往只关注用户的单一兴趣维度,无法满足用户多维度的兴趣需求。大模型的出现为推荐系统带来了新的机遇,本文将探讨如何利用大模型实现推荐系统的多维度兴趣融合。
2. 核心概念与联系
2.1 核心概念
- 大模型(Large Model):指具有数十亿乃至数千亿参数的模型,能够在广泛的领域表现出强大的泛化能力。
- 推荐系统(Recommender System):一种信息过滤系统,旨在帮助用户发现感兴趣的内容。
- 多维度兴趣融合(Multidimensional Interest Fusion):指综合考虑用户的多个兴趣维度,如内容、情感、时效性等,为用户提供个性化推荐。