引言与背景
1.1 问题背景
在当今快速发展的信息技术时代,人工智能(AI)已经成为推动社会进步和产业升级的重要力量。特别是近年来,随着深度学习技术的突破,大规模AI模型如BERT、GPT等在自然语言处理、计算机视觉和语音识别等领域取得了令人瞩目的成绩。然而,与此同时,一个不可忽视的问题逐渐浮现:这些强大但复杂的AI模型的可解释性(Explainability)问题。可解释性,即模型决策过程的透明度和可理解性,是当前AI研究与应用中面临的一大挑战。
需求与AI模型可解释性之间的平衡,是实际应用中尤为重要的课题。一方面,用户对AI系统的需求多样且不断变化,要求模型具备高效、准确的处理能力。另一方面,随着AI技术的广泛应用,用户和企业对模型决策过程透明度和可理解性的要求也越来越高。若无法平衡这两者,可能会导致以下问题:
- 决策不透明:复杂AI模型的“黑箱”特性,使得决策过程难以被理解和追踪,可能导致用户对AI系统的信任度下降。
- 合规性风险:在金融、医疗等敏感行业,AI模型的决策必须符合法律法规和伦理标准,缺乏可解释性可能带来合规性风险。
- 模型改进困难&#