零售业AI工作流实践:从需求预测到智能补货
关键词:需求预测、智能补货、零售供应链、时间序列分析、库存优化、机器学习、AI工作流
摘要:本文以零售业的实际业务痛点为切入点,详细拆解从需求预测到智能补货的全链路AI工作流。通过生活化类比、核心算法解析、代码实战案例和真实场景应用,帮助读者理解AI如何解决“库存积压”与“缺货断供”的两难问题,掌握零售供应链智能化升级的关键技术与实践方法。
背景介绍
目的和范围
零售业的核心矛盾是什么?是“货架永远不空”和“仓库永远不挤”的平衡。传统供应链依赖人工经验或简单统计模型,常导致“促销时卖断货”“淡季时库存发霉”。本文聚焦“需求预测→智能补货”这条关键链路,覆盖数据准备、模型构建、策略生成到落地验证的全流程,帮助零售企业用AI技术实现“精准预测-科学补货-降本增效”的闭环。
预期读者
- 零售行业供应链管理人员(想了解AI如何优化现有流程)
- 零售科技公司算法工程师(需要具体技术实现参考)
- 对AI应用感兴趣的跨界学习者(用生活化语言降低理解门槛)