强度理论的相当应力在坐标图里的表示

以下的图均只考虑二维,且没有切应力,有切应力的情况可以转换成只有两个正应力的情况,另外,这里画出的图均认为相当应力就是许用应力

第一,二强度理论用于脆性材料

两种强度理论的图均明显有一个转角,这是因为主应力的转变,当\sigma_x=\sigma_1\sigma_y=\frac{\sigma_x-[\sigma]}{\mu};当\sigma_y=\sigma_1\sigma_y=\mu \sigma_x+[\sigma]

绘制最大拉应变理论的代码如下

mu=0.3;%泊松比
sigma=200;%许用应力
x1=sigma/(1-mu);%两条线交点
x=0:x1/10:x1;
y1=sigma+mu.*x;
y2=-sigma/(mu)+x./(mu);
figure;
plot(x, y1, 'r--', 'LineWidth', 2); 
  
% 保持当前图形,以便添加更多线  
hold on;  
  
% 绘制y2,使用蓝色虚线  
plot(x, y2, 'b--', 'LineWidth', 2); % 'b--'表示蓝色虚线  
  
% 添加网格  
grid on;  
  
% 添加x和y坐标轴标签  
xlabel('x');  
ylabel('y');  
% 显示图例(如果需要)  
legend('y1', 'y2');  

第三,四强度理论用于脆性材料

这里绘制畸变能理论的图,公式为[\sigma]=\sqrt{2\sigma_x^2+2\sigma_y^2-2\sigma_x \sigma_y},用极坐标代替得\frac{[\sigma]^2}{2}=r^2-r^2 \sin(2\theta)

绘图代码如下

% 定义theta的范围和步长,为了只画右半部分 
theta = linspace(-pi/2, pi/2, 500);
  
% 计算对应的r值  
r = sqrt(2 ./ (2 - sin(2*theta))); % 注意使用./进行元素间除法  
  
% 绘制极坐标图像   
polarplot(theta, r);  
title('r^2 = 2 / (2 - sin(2\theta))');  
grid on;  
% 将极坐标转换为直角坐标
x = r .* cos(theta);
y = r .* sin(theta);

% 绘制直角坐标图像
figure; % 创建一个新的图形窗口
plot(x, y); % 绘制x和y的图形
title('r^2 = 2 / (2 - sin(2\theta)) in Cartesian coordinates');%直接将theta转变为θ
xlabel('\sigma_x/\sigma_s');%可以显示Latex语句
ylabel('\sigma_y/\sigma_s');
grid on; % 显示网格
axis equal; % 设置坐标轴比例相等,以便图形不会变形

从图形上看,在极坐标系下的和在直角坐标系下的相同

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bhZ567

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值