古典显示格式解一偏微分方程并绘制结果的彩色图

解如下偏微分方程

\begin{cases} \frac{\partial u}{\partial t}=a\frac{\partial ^2u}{\partial x^2}\,\,,0<x<1,t>0\\ u\left( x,0 \right) =4x\left( 1-x \right) \,\,,0\leqslant x\leqslant 1\\ u\left( 0,t \right) =u\left( 1,t \right) =0 ,t\geqslant 0\\ \end{cases}

以上公式的Latex代码

\begin{cases}
	\frac{\partial u}{\partial t}=a\frac{\partial ^2u}{\partial x^2}\,\,,0<x<1,t>0\\
	u\left( x,0 \right) =4x\left( 1-x \right) \,\,,0\leqslant x\leqslant 1\\
	u\left( 0,t \right) =u\left( 1,t \right) =0 ,t\geqslant 0\\
\end{cases}

MATLAB代码如下

Nt=10;
Nx=10;
a=0.025;
t0=0;
t1=1;
x0=0;
x1=1;
hx=(x1-x0)/Nx;
ht=(t1-t0)/Nt;
T=zeros(Nt+1,Nx+1);%存储每个点的结果
t=t0:ht:t1;
x=x0:hx:x1;
T(1,:)=4.*x.*(1-x);
r=Nt/Nx^2;%网格比
for j=2:Nt+1
    for k=2:Nx
        T(j,k)=a*r*(T(j-1,k-1)+T(j-1,k+1))+(1-2*a*r)*T(j-1,k);
    end
end
imagesc(x,t,T)
colorbar; % 显示颜色条

结果如下

最后画图时如果用mesh(x,t,T),会显示一个三维彩色网格图如下

通过转动也可以显示出x-T或t-T二维图

如果想要实心的格子,就用surf(x,t,T),效果如下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bhZ567

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值