一般情况下,有lm(z)或|z|存在的函数不可导,但是也有例外,比如
z
2
l
m
(
z
)
z^2 lm(z)
z2lm(z),在z=0处
lim
Δ
z
→
0
Δ
z
2
l
m
(
Δ
z
)
Δ
z
=
lim
Δ
z
→
0
Δ
z
l
m
(
Δ
z
)
=
0
\underset{\varDelta z\rightarrow 0}{\lim}\frac{\varDelta z^2lm\left( \varDelta z \right)}{\varDelta z}=\underset{\varDelta z\rightarrow 0}{\lim}\varDelta zlm\left( \varDelta z \right) =0
Δz→0limΔzΔz2lm(Δz)=Δz→0limΔzlm(Δz)=0
因此在z=0可导
再比如
∣
z
∣
2
\left| z \right|^2
∣z∣2,同样在z=0可导
一般看f(z)在定义域D内解析只看是否满足柯西-黎曼方程,即
∂
u
∂
x
=
∂
v
∂
y
,
∂
u
∂
y
=
−
∂
v
∂
x
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y},\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
∂x∂u=∂y∂v,∂y∂u=−∂x∂v两个式子同时成立,但是还要满足u和v在D内可微。