一、题目
数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字。
假设数组非空,并且一定存在满足条件的数字。
思考题:
- 假设要求只能使用 O(n)的时间和额外 O(1)的空间,该怎么做呢?
数据范围
数组长度 [1,1000]。
样例
输入:[1,2,1,1,3]
输出:1
二、解题思路
假设数组中的第一个数字为所求
那么遍历数组的时候,遇到第一个数字,就将中间变量count+1;
遇到不是第一个数字的数字就将中间变量count-1;
当count为0的时候说明第一个数字出现的次数到当前循环的位置时已经被其他数字抵消,说明第一个数字出现的次数并未过半
count为0,就重新假设一个数字为所求,循环结束的时候这个假设的数字就是出现次数大于数组半数的数字
三、代码实现
class Solution {
public:
int moreThanHalfNum_Solution(vector<int>& nums) {
//当数组个数小于等于2的时候 直接返回数组第一个数字即可
if(nums.size() <= 2)
return nums[0];
//假设第一个数字为超过半数的数字 count初始化为1 记录第一个数字出现次数为1
int val = nums[0],count = 1;
for(int i = 1;i < nums.size();i ++)
{
//从第二个数字开始遍历 遍历到假设的这个数字 count+1
if(nums[i] == val)
count ++;
//否则就将count-1 一个数超过半数 最后这个数的count一定大于0
else
count --;
//当count==0的时候说明到i位置之前的数字抵消了(不等于val的数字抵消val 说明val过半这个条件不满足 重新设置val的值 并将count重置)
if(count == 0)
{
val = nums[i];
count = 1;
}
}
return val;
}
};