一、题目
思路1
对于一个任意给定的二叉树,我们不能确定二叉树的形状;
设计一个每次遍历二叉树的右子树的深度优先遍历,这样深度优先遍历中每层遍历到的第一个结点就是最右边的结点;
代码实现大致分为四部分:
- 哈希表存储当前层对应的第一个遍历到的结点
- 结点栈实现每次遍历二叉树的右子树的深度优先遍历
- 深度栈保存结点栈的每个结点对应的深度
- 哈希表中不存在以当前层次为键的值,说明是深度优先遍历的第一个结点(最右结点)
思路1代码实现
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> rightSideView(TreeNode* root) {
unordered_map<int, int> rightmostValueAtDepth;
int max_depth = -1;
stack<TreeNode*> nodeStack;
stack<int> depthStack;
nodeStack.push(root);
depthStack.push(0);
while(!nodeStack.empty()) {
TreeNode* node = nodeStack.top(); nodeStack.pop();
int depth = depthStack.top(); depthStack.pop();
if(node) {
max_depth = max(max_depth, depth);
if(rightmostValueAtDepth.find(depth) == rightmostValueAtDepth.end())
{
//如果调用find方法没发现当前depth对应的数字 返回rightmostValueAtDepth.end()
rightmostValueAtDepth[depth] = node -> val;
}
nodeStack.push(node -> left);
nodeStack.push(node -> right);
depthStack.push(depth + 1);
depthStack.push(depth + 1);
}
}
vector<int> rightView;
for(int depth = 0; depth <= max_depth; depth ++)
rightView.push_back(rightmostValueAtDepth[depth]);
return rightView;
}
};
思路二
二叉树的右视图,我们可以利用队列的先入先出,后入后出的结构特点实现广度优先搜索,对二叉树进行层序遍历,每一层的最后访问的结点就是右视图能看到的结点。
代码实现大致分为四步
- 哈希表存储当前节点所在层次和对应的值
- 创建节点队列,实现对节点的广度优先遍历
- 层次队列保存对应节点的所在层数
- 不断更新哈希表的二叉树的每一层对应的结点值,实现存储每一次层序遍历的最后一个结点
思路二代码实现
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> rightSideView(TreeNode root) {
Map<Integer, Integer> rightmostValueAtDepth = new HashMap<Integer, Integer>();
int max_depth = -1;
Queue<TreeNode> nodeQueue = new LinkedList<TreeNode>();
Queue<Integer> depthQueue = new LinkedList<Integer>();
nodeQueue.add(root);
depthQueue.add(0);
while(!nodeQueue.isEmpty()) {
TreeNode node = nodeQueue.remove();
int depth = depthQueue.remove();
if(node != null) {
max_depth = Math.max(max_depth, depth);
//由于每一层最后一个结点才是想要的答案 因此不断更新哈希表中深度对应的节点值即可
rightmostValueAtDepth.put(depth, node.val);
nodeQueue.add(node.left);
nodeQueue.add(node.right);
depthQueue.add(depth + 1);
depthQueue.add(depth + 1);
}
}
List<Integer> rightView = new ArrayList<Integer>();
for(int depth = 0; depth <= max_depth; depth ++)
rightView.add(rightmostValueAtDepth.get(depth));
return rightView;
}
}