题目描述
本关任务:将编号为0和1的两个栈存放于一个数组空间V[m]中,栈底分别处于数组的两端。当第0号栈的栈顶指针top[0]等于-1时该栈为空;当第1号栈的栈顶指针top[1]等于m时,该栈为空。两个栈均从两端向中间增长(见下图)。试编写双栈初始化,判断栈空、栈满、进栈和出栈算法的函数。函数调用次序依次为:进栈、栈满的判断、出栈、栈空的判断。
输入描述
多组数据,每组数据有四行,每行的数据之间均用空格分隔。第一行为一个整数m,表示数组V的大小,第二行为四个整数e0、e1、d0、d1,e0和e1分别代表压入0号栈和1号栈的整数序列E0和E1的长度(依次连续入栈,中间没有出栈的情况),d0和d1分别代表从0号栈和1号栈弹出的序列的长度(依次连续出栈,中间没有入栈的情况)。第三行和第四行分别表示序列E0和E1。当m=0时,输入结束。
输出描述
对于每组数据输出三行。第一行代表进栈操作完成时栈是否为满(出栈操作尚未执行),栈满输出1,栈不满输出0。第二行和第三行的数据分别对应0号栈和1号栈。第二行包括d0+1个整数,其中前d0个整数代表出栈序列D0,最后一个整数代表出栈操作完成时0号栈是否为空,栈空输出0,不空输出1。第三行包括d1+1个整数,其中前d1个整数代表出栈序列D1,最后一个整数代表出栈操作完成时1号栈是否为空,栈空输出0,不空输出1。整数之间用空格分隔。
代码实现
#include<iostream>
using namespace std;
typedef struct {
int top[2], bot[2]; //栈顶和栈底指针
int * V; //栈数组
int m; //栈最大可容纳元素个数
}
DblStack;
void InitDblStack(DblStack & S, int m) { //初始化一个大小为m的双向栈
S.V = new int[m]; //动态分配一个最大容量为m的数组空间
S.bot[0] = -1; //左栈栈底指针
S.bot[1] = m; //右栈栈底指针
S.top[0] = -1; //左栈栈顶指针
S.top[1] = m; //右栈栈顶指针
}
int IsEmpty(DblStack S, int i) { //判断指定的i号栈是否为空,空返回1,否则返回0
return S.top[i] == S.bot[i];
}
int IsFull(DblStack S) { //判断栈是否满,满则返回1,否则返回0
if (S.top[0] + 1 == S.top[1]) return 1;
else return 0;
}
void Push(DblStack &S, int i){
int x;
cin >> x;
if (IsFull(S))
return;
if (i == 0)
{
S.V[++S.top[0]]= x;
}
else{
S.V[--S.top[1]] = x;
}
}
void Pop(DblStack &S, int i) {
if (S.top[i] == S.bot[i]) {
return;
}
if (i == 0){
cout << S.V[S.top[0]--] << ' ';
}
else if (i == 1)
{
cout << S.V[S.top[1]++] << ' ';
}
return;
}
int main() {
DblStack S;
int m, e0, e1, d0, d1;
while (cin >> m) {
if (m == 0) break;
InitDblStack(S, m);
cin >> e0 >> e1 >> d0 >> d1;
while (e0--)
Push(S, 0);
while (e1--)
Push(S, 1);
cout << IsFull(S) << endl;
while (d0--)
Pop(S, 0);
cout << !IsEmpty(S, 0) << endl;
while (d1--)
Pop(S, 1);
cout << !IsEmpty(S, 1) << endl;
}
return 0;
}