KD-Tree的原理及其在KNN中的应用(附Python代码),网易架构师深入讲解Python开发

    while layers:
        height += 1
        new_list = []
        for node in layers:
            if node.left:
                new_list.append(node.left)
            if node.right:
                new_list.append(node.right)
        layers = new_list
    return height

# 二叉树可视化
def visualize(self, axis='off'):
    '''
        基本算法: 将树状结构映射到二维矩阵中,
        如果节点左右下方有节点则把该节点加入到矩阵中的坐标中,
        如节点(x,y)左下方有节点则把节点放入(x+offset,y+1)
        offset为x坐标偏移量,
        offset = 2**(len(matrix)-y-2)
    '''
    figure, axes = plt.subplots(figsize=(8, 6), dpi=80)
    height = self.get_height()
    width_ = 2 ** (height - 1)
    width = 2 * width_ + 1
    matrix = [[[] for x in range(width)] for y in range(height)]

    matrix[0][width_] = bst_tree  # put head in the middle position

    for y in range(len(matrix)):
        for x in range(len(matrix[y])):
            node = matrix[y][x]
            if node:
                x1, y1 = (1 / width) * (x + 0.32), 1 - (1 / height) * y - 0.21
                axes.text(x1, y1, str(node.value), color='white', fontsize=FONT_SIZE, fontweight='bold')
                offset = 2 ** (len(matrix) - y - 2)

                if node.left:
                    matrix[y + 1][x - offset] = node.left
                    x2, y2 = (1 / width) * (x - offset + 0.5), 1 - (1 / height) * (y + 1) - 0.2
                    line = mlines.Line2D([x1, x2], [y1, y2], zorder=-1)
                    axes.add_line(line)
                if node.right:
                    matrix[y + 1][x + offset] = node.right
                    x2, y2 = (1 / width) * (x + offset + 0.5), 1 - (1 / height) * (y + 1) - 0.2
                    line = mlines.Line2D([x1, x2], [y1, y2], zorder=-1)
                    axes.add_line(line)
                cc = plt.Circle(((1 / width) * (x + 0.5), 1 - (1 / height) * y - 0.2), 1 / width / 2 * NODE_SIZE_SCALE, color='blue')
                axes.set_aspect(1)
                axes.add_artist(cc)

    plt.axis(axis)
    plt.show()

使用递归的方式构建二叉搜索树

def make_binary_search_tree(data):
if not data:
return
data.sort()
mid = len(data) // 2
tree = Node(data[mid], # 中间节点数据
make_binary_search_tree(data[:mid]), # 左子树
make_binary_search_tree(data[mid+1:])) # 右子树
return tree

FONT_SIZE = 20
NODE_SIZE_SCALE = 1
X = [3, 6, 5, 2, 4, 1, 7]
if name == ‘main’:
bst = make_binary_search_tree(X)
bst.visualize()


运行结果:  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/9141335ee5ab40a6b0dd9b64c9965399.png)  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/11b6e064c836448ebc62492b069c714b.png)


要求找到距离输入数据=2.1最近的节点,若使用线性搜索,那么需要进行7次比较,时间复杂度为 
 
 
 
 
 O 
 
 
 ( 
 
 
 N 
 
 
 ) 
 
 
 
 O(N) 
 
 
 O(N);


若使用二叉树搜索,只需要先和根节点4比较:2.1<4,此时记录最短距离d=1.9;进入左子树继续和2比较:2.1>2,更新最短距离d=0.1;进入右子树继续和3比较,此时两节点距离为0.9,0.9>0.1,因此最短距离就是0.1,且最近节点为2。使用二叉搜索树只需要3次就能找到最近节点,搜索的时间复杂度为 
 
 
 
 
 O 
 
 
 ( 
 
 
 l 
 
 
 o 
 
 
 g 
 
 
 N 
 
 
 ) 
 
 
 
 O(logN) 
 
 
 O(logN)。


## 三、KD-Tree


### 3.1 对KD-Tree的理解


**对于多维数据,可以使用二叉树在 K 维(在激光雷达中,一般使用三维点云,所以KD-Tree的维度K=3)空间上的扩展 KD-Tree**,它的时间复杂度也能近似达到 
 
 
 
 
 O 
 
 
 ( 
 
 
 l 
 
 
 o 
 
 
 g 
 
 
 N 
 
 
 ) 
 
 
 
 O(logN) 
 
 
 O(logN),实际上它的时间复杂度介于 
 
 
 
 
 O 
 
 
 ( 
 
 
 l 
 
 
 o 
 
 
 g 
 
 
 N 
 
 
 ) 
 
 
 
 O(logN) 
 
 
 O(logN)和 
 
 
 
 
 O 
 
 
 ( 
 
 
 N 
 
 
 ) 
 
 
 
 O(N) 
 
 
 O(N)之间。\*\*KD-Tree本质上是一种特殊的数据结构——基于空间的平衡二叉树。\*\*KD-Tree是每个节点都有k维数据的平衡二叉树,每个节点代表一个超平面,该超平面垂直于当前划分维度的坐标轴,并在该维度上将空间划分为两部分。**KD-Tree两个关键问题:① 树的建立;②最近邻域搜索。**


**KD-Tree和二叉搜索树的不同点在于**,二叉搜索树每个节点只有一维特征,所以构建二叉搜索树时只需要根据这一维数据进行划分即可;对于多维数据,KD-Tree的划分策略是交替地使用每一维特征进行划分。KD-Tree会将三维空间分割成下图形式:


\*\*KD-Tree本质上就是一种数据结构,\*\*它的优点:① 搜索效率高;② 它是自平衡的,所以插入、删除数据也能保持高效;③ 易于实现。  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/201a715b76934c7a874b1d332bd93f54.png)


### 3.2 生成KD-Tree


(1)初始化树深为 
 
 
 
 
 d 
 
 
 e 
 
 
 p 
 
 
 t 
 
 
 h 
 
 
 = 
 
 
 0 
 
 
 
 depth=0 
 
 
 depth=0和KD-Tree维度 
 
 
 
 
 K 
 
 
 
 K 
 
 
 K为数据维度;


(2)计算当前划分维度 
 
 
 
 
 s 
 
 
 p 
 
 
 l 
 
 
 i 
 
 
 t 
 
 
 = 
 
 
 d 
 
 
 e 
 
 
 p 
 
 
 t 
 
 
 h 
   
 
 % 
   
 
 K 
 
 
 
 split=depth\,\%\,K 
 
 
 split=depth%K,对当前维度数据进行排序并取其中位数;


(3)将该中位数作为分割点,并将其所在数据对作为当前根节点;


(4)将该维度数据小于该中位数的数据对传给当前根节点的左子树,将该维度数据大于该中位数的数据对传给当前根节点的右子树;


(5)递归执行步骤(2)~(4),直到所有数据都被建立到KD-Tree的节点上为止。


### 3.3 最近邻搜索


(1)从根节点出发进行查找,根据树深计算当前的分割维度split,若目标结点在分割维度上的数据小于当前节点,则进入左子树遍历,否则进入右子树遍历;


(2)重复步骤一,直到找到叶子节点,记录当前目标节点和当前节点的距离为最小距离,当前节点为最近节点,并开始回溯;


(3)回溯过程中若当前节点与目标节点距离更近,则更新最近节点及最小距离;并且判断是否需要遍历另一边子树:**若当前节点在分割维度上的数据与目标节点在分割维度上的数据间的距离小于当前最小距离,则进入另一边查找**,否则向上回溯;


(4)回溯到根节点,**同样比较根节点在当前分割维度上的数据与目标节点在分割维度上的数据间的距离小于当前最小距离**,则需要查找根节点的另一边子树,否则直接退出。


**整体思想:二分查找+回溯。**


\*\*细节点:\*\*回溯到某个节点,比较该节点和目标节点之间的距离时并不是计算欧氏距离(其实使用欧氏距离也可以),而是在当前分割维度上的数据之差,这是因为多维数据进行二分查找分割时,使用的是平行于某个坐标轴的超平面,\*\*每次判断是否查找另一边,是通过以目标节点为圆心,当前最小距离为半径做圆,判断当前分割面是否和该圆相交,\*\*如果不相交,那么说明该分割面另一边的点距离目标节点都更远,则不需要再查找;若相交,则说明分割面另一边可能存在距离目标节点更近的点,则需要查找另一边。  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/466ae2d1262b48b394a69e265262f30b.png)


[Python手撸机器学习系列(十一):KNN之kd树实现]( )


[【精选】KD-Tree详解: 从原理到编程实现\_白鸟无言的博客-CSDN博客]( )


[最近邻搜索 KD树 生动图示理解笔记]( )


[【量化课堂】kd 树算法之详细篇 - JoinQuant量化课堂 - JoinQuant]( )


(批量查询参考:[机器学习——详解KD-Tree原理]( ))


### 3.4 Python代码



import numpy as np
import matplotlib.pyplot as plt

创建Node类型

class Node(object):
def init(self, value, left=None, right=None):
self.val = value
self.left = left
self.right = right

创建KDTree类型

class KDTree(object):
def init(self, K):
self.K = K

# 建树
def build_tree(self, data, depth):
    l = len(data)
    if l == 0:
        return None

    split = depth % self.K  # 当前分割维度
    sorted_data = sorted(data, key=lambda x: x[split])  # 按照某个维度数据进行排序
    mid_idx = l // 2
    left_data = sorted_data[:mid_idx]
    right_data = sorted_data[mid_idx+1:]  # mid_idx已经作为当前层根节点了,所以不能加mid_idx这个数据对
    cur_node = Node(sorted_data[mid_idx])  # 将中位数作为当前根节点
    cur_node.left = self.build_tree(left_data, depth + 1)  # 递归构建当前根节点左子树
    cur_node.right = self.build_tree(right_data, depth + 1)  # 递归构建当前根节点右子树

    return cur_node

# 计算欧氏距离
def cal_dis(self, point1, point2):
    return np.linalg.norm(np.array(point1) - np.array(point2))

# 最近邻搜索(1个target)
def search_nn(self, tree, target):
    self.near_dis = None
    self.near_point = None

    def dfs(node, depth):
        if not node:
            return

        # 第一步要先找到叶子节点,之后再进行回溯
        split = depth % self.K
        if target[split] < node.val[split]:
            dfs(node.left, depth + 1)  # 该行包括下面的dfs行,第一个参数输入都是某个节点node.left或node.right,所以本质上该节点node并没有改变,每次改变的都是函数输入参数,所以当dfs递归结束并回退到该位置时,该节点没有变化,以此实现回溯上一个节点的过程!
        else:
            dfs(node.right, depth + 1)
        # ======= 到这结束就已经找到了某个路径下最终叶子节点 =======

        # 开始回溯,以当前叶子节点和目标节点的距离作为初始的最小距离
        dis = self.cal_dis(node.val, target)
        if not self.near_dis or dis < self.near_dis:
            self.near_dis = dis
            self.near_point = node.val

        # 判断是否遍历该节点另一边子树
        if abs(node.val[split] - target[split]) < self.near_dis:
            if target[split] < node.val[split]:  # 第一次从上往下遍历时目标节点值小于当前节点值时,就遍历左边;回溯时因为要遍历另一边,所以刚好相反!
                dfs(node.right, depth + 1)
            else:
                dfs(node.left, depth + 1)

    dfs(tree, 0)
    return self.near_point

if name == “main”:
# dataset, target, K = [[2, 3], [5, 4], [9, 6], [4, 7], [8, 1], [7, 2]], [1, 5], 2
N_points, K = 64, 2
dataset = np.random.rand(N_points, K) # 生成随机的三维坐标数据
target = np.random.rand(1, K)[0] # 目标点坐标
tree = KDTree(K) # 构建kdtree类
my_tree = tree.build_tree(dataset, 0) # 使用数据构建kdtree
nearest_point = tree.search_nn(my_tree, target) # 求最近邻坐标点

print('Nearest Point of {}: {}'.format(target, nearest_point))
plt.scatter([x[0] for x in dataset], [x[1] for x in dataset], c='blue', label='train_data')
plt.scatter(target[0], target[1], c='red', label='target')
plt.plot([nearest_point[0], target[0]], [nearest_point[1], target[1]], c='green', label='Nearest Point', linestyle='--')
plt.legend()
plt.show()

运行结果:  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/b28a703f7fbf43129b6375876b839627.png)


### 3.5 细节点理解


#### 3.5.1 分割维度的选择


**(1)选择方差最大的特征**


方差大说明该维度的数据相对分散,因此选择该特征进行分割可以获得更好的平衡。但可能会出现许多长条的分割,如右图。  


**自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。**

**深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!**

**因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。**
![img](https://img-blog.csdnimg.cn/img_convert/640bb986fa689a150abdc62c223da7c6.png)
![img](https://img-blog.csdnimg.cn/img_convert/62065f15ea9ad25cb5ec1186d22020f2.png)
![](https://img-blog.csdnimg.cn/img_convert/46506ae54be168b93cf63939786134ca.png)
![](https://img-blog.csdnimg.cn/img_convert/252731a671c1fb70aad5355a2c5eeff0.png)
![](https://img-blog.csdnimg.cn/img_convert/6c361282296f86381401c05e862fe4e9.png) 
![](https://img-blog.csdnimg.cn/img_convert/9f49b566129f47b8a67243c1008edf79.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!**

**由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新**

**如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)**
![img](https://img-blog.csdnimg.cn/img_convert/f0938ba5182d39fdd6f8f7f2d43eecc8.png)



做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。



别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。

我先来介绍一下这些东西怎么用,文末抱走。

* * *



**(1)Python所有方向的学习路线(新版)**

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。



最近我才对这些路线做了一下新的更新,知识体系更全面了。



![在这里插入图片描述](https://img-blog.csdnimg.cn/8fc093dcfa1f476694c574db1242c05b.png)



**(2)Python学习视频**



包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。



![在这里插入图片描述](https://img-blog.csdnimg.cn/d66e3ad5592f4cdcb197de0dc0438ec5.png#pic_center)



**(3)100多个练手项目**

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。



![在这里插入图片描述](https://img-blog.csdnimg.cn/f5aeb4050ab547cf90b1a028d1aacb1d.png#pic_center)



**(4)200多本电子书**  

  

这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。



基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。



**(5)Python知识点汇总**

知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。



![在这里插入图片描述](https://img-blog.csdnimg.cn/c741a91b05a542ba9dc8abf2f2f4b1af.png)



**(6)其他资料**



还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。



![在这里插入图片描述](https://img-blog.csdnimg.cn/9fa77af248b84885a6ec779b2ead064d.png)

**这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。**




[**一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!**](https://bbs.csdn.net/forums/4304bb5a486d4c3ab8389e65ecb71ac0)

**AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算**

入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。



![在这里插入图片描述](https://img-blog.csdnimg.cn/9fa77af248b84885a6ec779b2ead064d.png)

**这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。**




[**一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!**](https://bbs.csdn.net/forums/4304bb5a486d4c3ab8389e65ecb71ac0)

**AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算**

  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值