junjia = data[i][‘avgPrice’]
youhui = 1 if len(data[i][‘dealList’]) > 0 else 0
df.loc[s] = [ID,biaoti,junfen,pingjia,dizhi,junjia,youhui]
s = s + 1
来看下最终爬取并清洗完毕的数据,经过提取共有评论数据、店铺基本信息数据、评论标签数据👇
首先看下重庆市不同地区的火锅店分布,找火锅店嘛,总要找火锅店多的地区,这样能选择的店铺也更多
从上图可以看到,重庆市的火锅店基本集中在渝中区、渝北区、沙坪坝区、南岸区,并且经过进一步的计算可以得到这四个区的火锅店总数为388家,在所有进入统计的重庆市27个区县共750家店铺中占到了超过一半,所以优先去这四个区,十步一家火锅店,总有你要的!
在对地点分析之后,我们来对吃火锅的时间进行分析,以评论数量代替同时吃火锅的人数,并使用Pandas提取含有时间的评论并进行整理得到不同时间的人流量与平均评分
从上图可以看到,重庆人民吃火锅的时间集中在下午和晚上,并且高峰期集中在晚上7点至11点
,所以想安安静静吃火锅可以避开这段时间。不过从整体评价来看下午的评价不太好,反而晚上10点之后的评价比较高,可能是大家对于老板也耐心等候表示认可👇
每个店铺下的评价都有顾客评价的标签
本节我们通过绘制好评用户的矩形数图来看下带有哪些标签的火锅店获得的好评更多
从上图可以看出除了味道赞,重庆人更喜欢去回头客多、上菜快的店铺,所以当我们寻找一家火锅店的时候,点开店铺评价,按照带有上面标签找准没错。
在挑选一家火锅店的时候,价格也是很重要的一项参考指标,本节对人均价格绘制直方图同时添加对应价格的平均分曲线👇
可以看到,虽然重庆火锅店多,但是人均价格超过一百的并不多,大多集中在50—80之间,并且不是越便宜得到的评分越高,反而平均分最高的一个价格区间为100-110,其次是70-80,所以想要火锅吃的爽,至少准备一百块。
相信大家都会在去吃火锅之前看下商家是否有代金券/团购,所以本节使用箱线图对重庆市火锅店的优惠信息进行分析
图中箱子越宽说明数量越多,可以看到大部分商家是出售代金券的,是否有代金券对于高分评价没啥影响,但是有代金券的最低分是0分而没有代金券的商家最低分是3+,所以并不是一定要选有优惠的,有时没有优惠可能体验更好哦。
假设通过上面的分析,我们已经找到了一家火锅店准备开吃,本节继续通过提取评论关键词来看看网友爱点什么菜
从上图可以看到,最受重庆人民喜爱的肉是牛肉,蔬菜爱选豆芽,喜欢吃油碟的人更多,当然羊肉、毛肚也不能少。
在对店铺的影响因素分析完之后,本节对采集到的近万条评论数据进行词云分析,看看大家都在说什么
可以看到除了味道,大家评论的热点还有服务、服务员、环境,看来重庆火锅的服务相关还是很重要的参考指标。
在我们获取的评论数据中,用户是有等级的,根据查找美团相关资料知道这些等级是根据用户的消费次数、评价质量等多个维度计算得到,相信他们的评价更具有参考价值
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注Python)
的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!**
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注Python)
