Day60: 动态规划 LeedCode 647. 回文子串 516. 最长回文子序列

647. 回文子串

给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目。

回文字符串 是正着读和倒过来读一样的字符串。

子字符串 是字符串中的由连续字符组成的一个序列。

具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

示例 1:

输入:s = "abc"
输出:3
解释:三个回文子串: "a", "b", "c"

示例 2:

输入:s = "aaa"
输出:6
解释:6个回文子串: "a", "a", "a", "aa", "aa", "aaa"

提示:

  • 1 <= s.length <= 1000
  • s 由小写英文字母组成

思路:

动规五部曲:

1.确定dp数组(dp table)以及下标的含义

dp[i] 为 下标i结尾的字符串有 dp[i]个回文串的话,我们会发现很难找到递归关系。

dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。

注意 j >= i

2.确定递推公式

当s[i]与s[j]不相等 

dp[i][j]一定是false。

当s[i]与s[j]相等时

情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串

情况二:下标i 与 j相差为1,例如aa,也是回文子串

情况三:下标:i 与 j相差大于1的时候

这个区间是不是回文就看dp[i + 1][j - 1]是否为true。

 if(s.charAt(i)!=s.charAt(j)){dp[i][j]=false; }

 if(s.charAt(i)==s.charAt(j)){

 if(j-i<=1){

//情况1,2
                dp[i][j]=true;
                result++;
            }else{

//情况3
                if(dp[i+1][j-1]){
                    dp[i][j]=true;
                    result++;
                  }

               }

}

3.dp数组如何初始化

dp[i][j]初始化为false

4.确定遍历顺序

首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的

dp[i + 1][j - 1] 在 dp[i][j]的左下角

所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的

5.举例推导dp数组

代码参考:

class Solution {
    public int countSubstrings(String s) {
     boolean[][] dp=new boolean[s.length()][s.length()];
     int result=0;
      for(int i=s.length()-1;i>=0;i--){
        for(int j=i;j<s.length();j++){
           if(s.charAt(i)!=s.charAt(j)){
            dp[i][j]=false;
           }else{
            if(j-i<=1){
                dp[i][j]=true;
                result++;
            }else{
                if(dp[i+1][j-1]){
                    dp[i][j]=true;
                    result++;
                }
            }
           }
        }
      }
      return result;
    }
}

516. 最长回文子序列

给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。

子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。

示例 1:

输入:s = "bbbab"
输出:4
解释:一个可能的最长回文子序列为 "bbbb" 。

示例 2:

输入:s = "cbbd"
输出:2
解释:一个可能的最长回文子序列为 "bb" 。

提示:

  • 1 <= s.length <= 1000
  • s 仅由小写英文字母组成

思路:

本题是求回文子序列,而不是回文子串,回文子串是要连续的,回文子序列可以不是连续的!

动规五部曲分析如下:

1确定dp数组(dp table)以及下标的含义

dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]

2.确定递推公式

如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;

如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度

加入s[j]的回文子序列长度为dp[i + 1][j]。

加入s[i]的回文子序列长度为dp[i][j - 1]。

那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);

if (s[i] == s[j]) {
    dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}

3.dp数组如何初始化

需要手动初始化一下,当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。其他情况dp[i][j]初始为0

4.确定遍历顺序

遍历i的时候一定要从下到上遍历,这样才能保证下一行的数据是经过计算的

j的话,可以正常从左向右遍历。

5.举例推导dp数组

代码参考:

class Solution {
    public int longestPalindromeSubseq(String s) {
      int [][] dp=new int[s.length()][s.length()];
      //初始化
      for(int i=0;i<s.length();i++){
       dp[i][i]=1;
      }

      for( int i=s.length()-2;i>=0;i--){
        for(int j=i+1;j<s.length();j++){
            if(s.charAt(i)==s.charAt(j)){
                dp[i][j]=dp[i+1][j-1]+2;
            }else{
                dp[i][j]=Math.max(dp[i][j-1],dp[i+1][j]);
            }
        }
      }
    return dp[0][s.length()-1];
    }
}

  • 8
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
根据提供的引用内容,有三种方法可以解决LeetCode上的最长回文子串问题。 方法一是使用扩展中心法优化,即从左向右遍历字符串,找到连续相同字符组成的子串作为扩展中心,然后从该中心向左右扩展,找到最长回文子串。这个方法的时间复杂度为O(n²)。\[1\] 方法二是直接循环字符串,判断子串是否是回文子串,然后得到最长回文子串。这个方法的时间复杂度为O(n³),效率较低。\[2\] 方法三是双层for循环遍历所有子串可能,然后再对比是否反向和正向是一样的。这个方法的时间复杂度也为O(n³),效率较低。\[3\] 综上所述,方法一是解决LeetCode最长回文子串问题的最优解法。 #### 引用[.reference_title] - *1* [LeetCode_5_最长回文子串](https://blog.csdn.net/qq_38975553/article/details/109222153)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Leetcode-最长回文子串](https://blog.csdn.net/duffon_ze/article/details/86691293)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [LeetCode 第5题:最长回文子串(Python3解法)](https://blog.csdn.net/weixin_43490422/article/details/126479629)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值