《算法和数据结构》动态规划篇_数据结构哪里用了动态规划算法

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新网络安全全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上网络安全知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip204888 (备注网络安全)
img

正文

f[i][j] = \begin{cases}0 & i=0\ or\ j=0 \ f[i-1][j-1] + 1 & i,j>0,a_i=b_j \ \max(f[i][j-1], f[i-1][j]) & i,j>0,a_i \neq b_j\end{cases}

f[i][j]=⎩⎪⎨⎪⎧​0f[i−1][j−1]+1max(f[i][j−1],f[i−1][j])​i=0 or j=0i,j>0,ai​=bj​i,j>0,ai​​=bj​​  对于

i

=

0

i=0

i=0 或者

j

=

0

j=0

j=0 代表的是:其中一个序列的长度为 0,那么最长公共子序列的长度肯定就是 0 了;
  其余两种情况,就是我们上文提到的

a

i

a_i

ai​ 和

b

j

b_j

bj​ “相等” 与 “不相等” 的两种情况下的状态转移。如图所示,代表了字符串 “GATCGTGAGC” 和 “AGTACG” 求解最长公共子序列的

f

[

i

]

[

j

]

(

i

,

j

0

)

f[i][j] (i,j > 0)

f[i]j 的矩阵。

  对于长度分别为

n

n

n 和

m

m

m 的两个序列,求解它们的最长公共子序列时,状态数总共有

O

(

n

m

)

O(nm)

O(nm) 个,每次状态转移的消耗为

O

(

1

)

O(1)

O(1),所以总的时间复杂度为

O

(

n

m

)

O(nm)

O(nm)。
  对于

f

[

i

]

[

j

]

f[i][j]

f[i][j] 这个状态,求解过程中,只依赖于

f

[

i

]

[

j

1

]

f[i][j-1]

f[i][j−1]、

f

[

i

1

]

[

j

1

]

f[i-1][j-1]

f[i−1][j−1]、

f

[

i

1

]

[

j

]

f[i-1][j]

f[i−1][j]。

在这里插入图片描述
  即每次求解只需要有 上一行 和 这一行 的状态即可,所以可以采用滚动数组进行优化,将状态转移方程变成:

f

[

c

u

r

]

[

j

]

=

{

f

[

l

a

s

t

]

[

j

1

]

1

j

0

,

a

i

=

b

j

max

(

f

[

c

u

r

]

[

j

1

]

,

f

[

l

a

s

t

]

[

j

]

)

j

0

,

a

i

b

j

f[cur][j] = \begin{cases}f[last][j-1] + 1 & j>0,a_i=b_j \ \max(f[cur][j-1], f[last][j]) & j>0,a_i \neq b_j\end{cases}

f[cur][j]={f[last][j−1]+1max(f[cur][j−1],f[last][j])​j>0,ai​=bj​j>0,ai​​=bj​​  只需要简单将

i

i

i 替换成

c

u

r

cur

cur,

i

1

i-1

i−1 替换成

l

a

s

t

last

last 即可。这样就把原本

O

(

n

m

)

O(nm)

O(nm) 的空间复杂度变成了

O

(

p

)

O§,其中

p

=

min

(

n

,

m

)

p = \min(n,m)

p=min(n,m)。

  • 优化后的 C++ 代码实现如下:
typedef char ValueType;
const int maxn = 5010;
int f[2][maxn];

int getLCSLength(int hsize, ValueType \*h, int vsize, ValueType \*v) {
    memset(f, 0, sizeof(f));
    int cur = 1, last = 0;
    for (int i = 1; i <= vsize; ++i) {
        for (int j = 1; j <= hsize; ++j) {
            if (v[i] == h[j])
                f[cur][j] = f[last][j - 1] + 1;
            else
                f[cur][j] = max(f[cur][j - 1], f[last][j]);
        }
        swap(last, cur);
    }
    return f[last][hsize];
}

有关于 最长公共子序列 的更多内容,可以参考以下内容:夜深人静写算法(二十一)- 最长公共子序列

2、最小编辑距离

长度为

n

n

n 的源字符串

a

1

,

a

2

,

.

.

.

,

a

n

a_1,a_2,…,a_n

a1​,a2​,…,an​,经过一些给定操作变成长度为

m

m

m 的目标字符串

b

1

,

b

2

,

.

.

.

b

m

b_1,b_2,…b_m

b1​,b2​,…bm​,操作包括如下三种:
  1)

I

n

s

e

r

t

Insert

Insert:在源字符串中插入一个字符,插入消耗为

I

I

I;
  2)

D

e

l

e

t

e

Delete

Delete:在源字符串中删除一个字符,删除消耗为

D

D

D;
  3)

R

e

p

l

a

c

e

Replace

Replace:将源字符串中的一个字符替换成另一个字符,替换消耗为

R

R

R;
求最少的总消耗,其中

n

,

m

1000

n,m \le 1000

n,m≤1000。

f

[

i

]

[

j

]

f[i][j]

f[i][j] 表示源字符串

a

1

,

a

2

,

.

.

.

,

a

i

a_1,a_2,…,a_i

a1​,a2​,…,ai​ 经过上述三种操作变成目标字符串

b

1

,

b

2

,

.

.

.

b

j

b_1,b_2,…b_j

b1​,b2​,…bj​ 的最少消耗。
  假设

a

1

,

a

2

,

.

.

.

,

a

i

a_1,a_2,…,a_{i}

a1​,a2​,…,ai​ 变成

b

1

,

b

2

,

.

.

.

b

j

1

b_1,b_2,…b_{j-1}

b1​,b2​,…bj−1​ 的最少消耗已经求出,等于

f

[

i

]

[

j

1

]

f[i][j-1]

f[i][j−1],则需要在

a

[

i

]

a[i]

a[i] 的后面插入一个字符

b

j

b_j

bj​,那么产生的消耗为:

f

[

i

]

[

j

1

]

I

f[i][j-1] + I

f[i][j−1]+I 如图所示,源字符串为 “AGTA”,目标字符串为 “GATCGT” 的情况下,将源字符串变成 "“GATCG” 的最小消耗为

f

[

i

]

[

j

1

]

f[i][j-1]

f[i][j−1],那么只要在源字符串最后再插入一个 ‘T’,就可以把源字符串变成目标字符串 “GATCGT”;
在这里插入图片描述
  假设

a

1

,

a

2

,

.

.

.

,

a

i

1

a_1,a_2,…,a_{i-1}

a1​,a2​,…,ai−1​ 变成

b

1

,

b

2

,

.

.

.

b

j

b_1,b_2,…b_{j}

b1​,b2​,…bj​ 的最少消耗已经求出,等于

f

[

i

1

]

[

j

]

f[i-1][j]

f[i−1][j],则需要把

a

i

a_i

ai​ 个删掉,那么产生的消耗为:

f

[

i

1

]

[

j

]

D

f[i-1][j] + D

f[i−1][j]+D 如图所示,源字符串为 “AGTA”,目标字符串为 “GATCGT” 的情况下,将 “AGT” 变成目标字符串的最小消耗为

f

[

i

1

]

[

j

]

f[i-1][j]

f[i−1][j],那么只要把源字符串最后一个’A’删掉,就可以把源字符串变成目标字符串;

假设

a

1

,

a

2

,

.

.

.

,

a

i

1

a_1,a_2,…,a_{i-1}

a1​,a2​,…,ai−1​ 变成

b

1

,

b

2

,

.

.

.

b

j

1

b_1,b_2,…b_{j-1}

b1​,b2​,…bj−1​ 的最少消耗已经求出,等于

f

[

i

1

]

[

j

1

]

f[i-1][j-1]

f[i−1][j−1],则将

a

i

a_i

ai​ 替换成

b

j

b_j

bj​,

a

1

,

a

2

,

.

.

.

,

a

i

a_1,a_2,…,a_{i}

a1​,a2​,…,ai​ 就可以变成

b

1

,

b

2

,

.

.

.

b

j

b_1,b_2,…b_{j}

b1​,b2​,…bj​。替换时需要考虑

a

i

=

b

j

a_i=b_j

ai​=bj​ 和

a

i

b

j

a_i \neq b_j

ai​​=bj​ 的情况,所以替换产生的消耗为:

f

[

i

1

]

[

j

1

]

{

0

a

i

=

b

j

R

a

i

b

j

f[i-1][j-1] + \begin{cases} 0 & a_i=b_j \ R & a_i \neq b_j\end{cases}

f[i−1][j−1]+{0R​ai​=bj​ai​​=bj​​ 如图所示,源字符串为 “AGTA”,目标字符串为 “GATCGT” 的情况下,将 “AGT” 变成 “GATCGT” 的最小消耗为

f

[

i

1

]

[

j

1

]

f[i-1][j-1]

f[i−1][j−1],那么只要将 源字符串 的最后一个字符 替换为 目标字符串 的最后一个字符 ,就可以把源字符串变成目标字符串;替换时根据 源字符串 和 目标字符串 原本是否相等来决定消耗;

  • 边界情况主要考虑以下几种:
      a. 空串变成目标串

f

[

0

]

[

j

]

f[0][j]

f[0][j],总共需要插入

j

j

j 个字符,所以

f

[

0

]

[

j

]

=

f

[

0

]

[

j

1

]

I

f[0][j] = f[0][j-1] + I

f[0][j]=f[0][j−1]+I;
  b. 源字符串变成空串

f

[

i

]

[

0

]

f[i][0]

f[i][0],总共需要删除

i

i

i 个字符,所以

f

[

i

]

[

0

]

=

f

[

i

1

]

[

0

]

D

f[i][0] = f[i-1][0] + D

f[i][0]=f[i−1][0]+D;
  c. 空串变成空串

f

[

0

]

[

0

]

=

0

f[0][0] = 0

f[0][0]=0

将上述所有状态进行一个整合,得到状态转移方程如下:

f

[

i

]

[

j

]

=

{

0

i

=

0

,

j

=

0

f

[

i

]

[

j

1

]

I

i

=

0

,

j

0

f

[

i

1

]

[

j

]

D

i

0

,

j

=

0

min

i

0

,

j

0

{

f

[

i

]

[

j

1

]

I

f

[

i

1

]

[

j

]

D

f

[

i

1

]

[

j

1

]

R

a

i

b

j

f[i][j] = \begin{cases}0 & i=0,j=0\f[i][j-1]+I & i=0,j>0\ f[i-1][j] + D & i>0,j=0 \ \min_{i>0,j>0} \begin{cases} f[i][j-1] + I\ f[i-1][j] + D\ f[i-1][j-1] + R_{a_i \neq b_j}\end{cases}\end{cases}

f[i][j]=⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎧​0f[i][j−1]+If[i−1][j]+Dmini>0,j>0​⎩⎪⎨⎪⎧​f[i][j−1]+If[i−1][j]+Df[i−1][j−1]+Rai​​=bj​​​​i=0,j=0i=0,j>0i>0,j=0
  通过这个状态矩阵,最后计算得到

f

[

n

]

[

m

]

f[n][m]

f[n][m] 就是该题所求 "源字符串

a

1

,

a

2

,

.

.

.

,

a

n

a_1,a_2,…,a_n

a1​,a2​,…,an​,经过 插入、删除、替换 变成目标字符串

b

1

,

b

2

,

.

.

.

b

m

b_1,b_2,…b_m

b1​,b2​,…bm​" 的最少消耗了,特殊的,当

I

=

D

=

R

=

1

I = D = R = 1

I=D=R=1 时,

f

[

n

]

[

m

]

f[n][m]

f[n][m] 就是字符串

a

a

a 和

b

b

b 的莱文斯坦距离。
  状态总数

O

(

n

m

)

O(nm)

O(nm),每次状态转移的消耗为

O

(

1

)

O(1)

O(1),所以总的时间复杂度为

O

(

n

m

)

O(nm)

O(nm),空间上可以采用滚动数组进行优化,具体优化方案可以参考 最长公共子序列 的求解过程。
  如图所示的是一张源字符串 “AGTACG” 到目标字符串 “GATCGTGAGC” 的莱文斯坦距离图。
在这里插入图片描述
  有关最小编辑距离的详细内容,可以参考:夜深人静写算法(二十二)- 最小编辑距离

3、双串匹配问题

给定一个 匹配字符串 s (只包含小写字母) 和一个 模式字符串 p (包含小写字母和两种额外字符:'.''*'),要求实现一个支持 '.''*'的正则表达式匹配('*'前面保证有字符)。
  '.'匹配任意单个字符
  '*'匹配零个或多个前面的那一个元素

这是个经典的 串匹配 问题,可以按照 最长公共子序列 的思路去解决。令

f

(

i

,

j

)

f(i, j)

f(i,j) 代表的是 匹配串前缀 s[0:i]模式串前缀 p[0:j] 是否有匹配,只有两个值: 0 代表 不匹配, 1 代表 匹配
  于是,对模式串进行分情况讨论:
  1)当 p[j].时,代表 s[i] 为任意字符时,它都能够匹配(没毛病吧?没毛病),所以问题就转化成了求 匹配串前缀 s[0:i-1]模式串前缀 p[0:j-1] 是否有匹配的问题,也就是这种情况下

f

(

i

,

j

)

=

f

(

i

1

,

j

1

)

f(i, j) = f(i-1, j-1)

f(i,j)=f(i−1,j−1),如图1所示:


  2)当 p[j]*时,由于*前面保证有字符,所以拿到字符 p[j-1],分情况讨论:
    2.a)如果 p[j-1].时,可以匹配所有 s[0:i] 的后缀,这种情况下,只要

f

(

k

,

j

2

)

f(k, j-2)

f(k,j−2) 为 1,

f

(

i

,

j

)

f(i, j)

f(i,j) 就为 1;其中

k

[

0

,

i

]

k \in [0, i]

k∈[0,i]。如下图所示:


    2.b)如果 p[j-1].时,只有当 s[0:i] 的后缀 字符全为 p[j-1] 时,才能去匹配 s[0:i] 的前缀,同样转化成

f

(

k

,

j

2

)

f(k, j-2)

f(k,j−2) 的子问题。如下图所示:


  3)当 p[j] 为其他任意字符时,一旦 p[j]s[i] 不匹配,就认为

f

(

i

,

j

)

=

0

f(i, j) = 0

f(i,j)=0,否则

f

(

i

,

j

)

=

f

(

i

1

,

j

1

)

f(i, j) = f(i-1, j-1)

f(i,j)=f(i−1,j−1),如下图所示:


  最后,这个问题可以采用 记忆化搜索 求解,并且需要考虑一些边界条件,边界条件可以参考代码实现中的讲解。记忆化搜索会在下文仔细讲解。
  匹配串的长度为

n

n

n,模式串的长度为

m

m

m。状态数:

O

(

n

m

)

O(nm)

O(nm),状态转移:

O

(

n

)

O(n)

O(n),时间复杂度:

O

(

n

2

m

)

O(n^2m)

O(n2m)。

四、记忆化搜索

给定一个

n

(

n

45

)

n(n \le 45)

n(n≤45),求 斐波那契数列的第

n

n

n 项的值,要求用递归实现。

那么,我们只需要套用上面的递归函数,并且处理好递归出口,就能把它写成递归的形式,C语言 代码实现如下:

int f(unsigned int n) {
    if(n <= 1) {
        return 1;
    }
    return f(n-1) + f(n-2);
}

递归求解的过程如下:

  这是一棵二叉树,树的高度为

n

n

n,所以粗看递归访问时结点数为

2

n

2^n

2n,但是仔细看,对于任何一棵子树而言,左子树的高度一定比右子树的高度大,所以不是一棵严格的完全二叉树。为了探究它实际的时间复杂度,我们改下代码:

int f(unsigned int n) {
    ++c[n];
    if(n <= 1) {
        return 1;
    }
    return f(n-1) + f(n-2);
}

加了一句代码 ++c[n];,引入一个计数器,来看下在不同的

n

n

n 的情况下,

f

(

n

)

f(n)

f(n) 这个函数的调用次数,如图所示:
在这里插入图片描述
  观察

c

[

n

]

c[n]

c[n] 的增长趋势,首先排除等差数列,然后再来看是否符合等比数列,我们来尝试求下

c

[

n

]

/

c

[

n

1

]

c[n] / c[n-1]

c[n]/c[n−1] 的值,列出表格如下:
在这里插入图片描述
  观察发现,随着

n

n

n 的不断增大,

c

[

n

]

/

c

[

n

1

]

c[n]/c[n-1]

c[n]/c[n−1] 越来越接近一个常数,而这个常数就是黄金分割的倒数:

2

5

1

1.618034

\frac {2}{ \sqrt 5 - 1} \approx 1.618034

5

​−12​≈1.618034  当

n

n

n 趋近于无穷大的时候,满足如下公式:

c

[

n

]

=

2

5

1

c

[

n

1

]

c[n] = \frac {2}{ \sqrt 5 - 1} c[n-1]

c[n]=5

​−12​c[n−1]  对等比数列化解后累乘得到:

c

[

n

]

=

2

5

1

c

[

n

1

]

=

(

2

5

1

)

2

c

[

n

2

]

=

(

2

5

1

)

n

\begin{aligned}c[n] &= \frac {2}{ \sqrt 5 - 1} c[n-1]\ &= (\frac {2}{ \sqrt 5 - 1})^2 c[n-2]\ &= (\frac {2}{ \sqrt 5 - 1})^n \end{aligned}

c[n]​=5

​−12​c[n−1]=(5

​−12​)2c[n−2]=(5

​−12​)n​  所以,斐波那契数列递归求解的时间复杂度就是 :

O

(

(

2

5

1

)

n

)

O((\frac {2}{ \sqrt 5 - 1})^n)

O((5

​−12​)n)
  这是一个指数级的算法,随着

n

n

n 的不断增大,时间消耗呈指数级增长,我们在写代码的时候肯定是要避免这样的写法的,尤其是在服务器开发过程中,CPU 是一种极其宝贵的资源,任何的浪费都是可耻的。但是,面试官又要求用递归实现,真是太讨厌了!
  那么,怎么来优化这里的算力消耗呢?
  递归求解斐波那契数列其实是一个深度优先搜索的过程,它是毫无优化的暴力枚举,对于

f

(

5

)

f(5)

f(5) 的求解,如图所示:

  同时,我们也发现,计算过程中其实有很多重叠子问题,例如

f

(

3

)

f(3)

f(3) 被计算了

2

2

2 次,如图所示:

f

(

2

)

f(2)

f(2) 被计算了

3

3

3 次,如图所示:
在这里插入图片描述
  所以如果我们能够确保每个

f

(

i

)

f(i)

f(i) 只被计算一次,问题就迎刃而解了。可以考虑将

f

(

i

)

f(i)

f(i) 计算出来的值存储到哈希数组

h

[

i

]

h[i]

h[i] 中,当第二次要访问

f

(

i

)

f(i)

f(i) 时,直接取

h

[

i

]

h[i]

h[i] 的值即可,这样每次计算

f

(

i

)

f(i)

f(i) 的时间复杂度变成了

O

(

1

)

O(1)

O(1),总共需要计算

f

(

2

)

,

f

(

3

)

,

.

.

.

f

(

n

)

f(2),f(3),…f(n)

f(2),f(3),…f(n),总的时间复杂度就变成了

O

(

n

)

O(n)

O(n) 。
  这种用哈希数组来记录运算结果,避免重复运算的方法就是记忆化搜索。
  这件事情如何执行下去呢?
  我们用一个数组

h

[

i

]

h[i]

h[i] 来记录 斐波那契数列 第

i

i

i 项的值,把之前的递归代码改成如下形式:

const int inf = -1;
int h[46];

void init() {
    memset(h, inf, sizeof(h));  // 1)
}

int f(unsigned int n) {
    if(n <= 1) {
        return 1;
    }
    int &fib = h[n];            // 2)
    if(fib != inf) {
        return fib;             // 3)
    }
    fib = f(n-1) + f(n-2);      // 4)
    return fib;
}

  • 1)初始化所有

f

(

i

)

f(i)

f(i) 都没有被计算过,为了方便用 memset,可以将 inf定义成 -1;

  • 2)注意这里用了个引用,而且一定要用引用,具体原因留给读者自己思考,当然不想思考的话,下文也会讲到,不必担心;
  • 3)当 fib也就是 h[n]已经计算过了,那么直接返回结果即可;
  • 4)最后,利用递归计算h[n]的值,并且返回结果;

和递归版本相比,多了这么一段代码:

    int &fib = h[n];
    if(fib != inf) {
        return fib;
    }

那么它的作用体现在哪里呢?我们通过一个动图来感受一下:

  如图所示,当第二次需要计算

f

(

2

)

f(2)

f(2) 和

f

(

3

)

f(3)

f(3) 时,由于结果已经计算出来并且存储在

h

[

2

]

h[2]

h[2] 和

h

[

3

]

h[3]

h[3] 中,所以上面这段代码的fib != inf表达式为真,直接返回,不再需要往下递归计算,这样就把原本的 “递归二叉树” 转换成了 “递归链”, 从而将原本指数级的算法变成了多项式级别。
  上文用一个简单的例子阐述了记忆化搜索的实现方式,并且提到了利用数组来记录已经计算出来的重叠子问题,这个和动态规划的思想非常相似,没错,记忆化搜索其实用的就是动态规划的思想。更加确切的说,可以用如下公式来表示:

记忆化搜索 = 深度优先搜索的实现 + 动态规划的思想

有关记忆化搜索的更多内容,可以参考:
夜深人静写算法(二十六)- 记忆化搜索

五、背包问题

1、0/1 背包

n

(

n

100

)

n(n \le100)

n(n≤100) 个物品和一个容量为

m

(

m

10000

)

m(m \le 10000)

m(m≤10000) 的背包。第

i

i

i 个物品的容量是

c

[

i

]

c[i]

c[i],价值是

w

[

i

]

w[i]

w[i]。现在需要选择一些物品放入背包,并且总容量不能超过背包容量,求能够达到的物品的最大总价值。

以上就是 0/1 背包问题的完整描述,之所以叫 0/1 背包,是因为每种物品只有一个,可以选择放入背包或者不放,而 0 代表不放,1 代表放。
  第一步:设计状态;
  状态

(

i

,

j

)

(i, j)

(i,j) 表示前

i

i

i 个物品恰好放入容量为

j

j

j 的背包

(

i

[

0

,

n

]

,

j

[

0

,

m

]

)

(i \in [0, n], j \in [0, m])

(i∈[0,n],j∈[0,m]);
  令

d

p

[

i

]

[

j

]

dp[i][j]

dp[i][j] 表示状态

(

i

,

j

)

(i, j)

(i,j) 下该背包得到的最大价值,即前

i

i

i 个物品恰好放入容量为

j

j

j 的背包所得到的最大总价值;
  第二步:列出状态转移方程;

d

p

[

i

]

[

j

]

=

m

a

x

(

d

p

[

i

1

]

[

j

]

,

d

p

[

i

1

]

[

j

c

[

i

]

]

w

[

i

]

)

dp[i][j] = max(dp[i-1][j], dp[i-1][j - c[i]] + w[i])

dp[i][j]=max(dp[i−1][j],dp[i−1][j−c[i]]+w[i]) 因为每个物品要么放,要么不放,所以只需要考虑第

i

i

i 个物品 放 或 不放 的情况:
  1)不放:如果 “第

i

i

i 个物品不放入容量为

j

j

j 的背包”,那么问题转化成求 “前

i

1

i-1

i−1 个物品放入容量为

j

j

j 的背包” 的问题;由于不放,所以最大价值就等于 “前

i

1

i-1

i−1 个物品放入容量为

j

j

j 的背包” 的最大价值,即

d

p

[

i

1

]

[

j

]

dp[i-1][j]

dp[i−1][j];
  2)放:如果 “第

i

i

i 个物品放入容量为

j

j

j 的背包”,那么问题转化成求 “前

i

1

i-1

i−1 个物品放入容量为

j

c

[

i

]

j-c[i]

j−c[i] 的背包” 的问题;那么此时最大价值就等于 “前

i

1

i-1

i−1 个物品放入容量为

j

c

[

i

]

j-c[i]

j−c[i] 的背包” 的最大价值 加上放入第

i

i

i 个物品的价值,即

d

p

[

i

1

]

[

j

c

[

i

]

]

w

[

i

]

dp[i-1][j - c[i]] + w[i]

dp[i−1][j−c[i]]+w[i];
  将以上两种情况取大者,就是我们所求的 “前

i

i

i 个物品恰好放入容量为

j

j

j 的背包” 的最大价值了。
  我们发现,当状态在进行转移的时候,

(

i

,

j

)

(i, j)

(i,j) 不是来自

(

i

1

,

j

)

(i-1, j)

(i−1,j),就是来自

(

i

1

,

j

c

[

i

]

)

(i-1, j - c[i])

(i−1,j−c[i]),所以必然有一个初始状态,而这个初始状态就是

(

0

,

0

)

(0, 0)

(0,0),含义是 “前 0 个物品放入一个背包容量为 0 的背包”,这个状态下的最大价值为 0,即

d

p

[

0

]

[

0

]

=

0

dp[0][0] = 0

dp[0][0]=0;
  那么我们再来考虑,

(

0

,

3

)

(0, 3)

(0,3) 是什么意思呢?它代表的是 “前 0 个物品恰好放入一个背包容量为 3 的背包”,明显这种情况是不存在的,因为 0 个物品的价值肯定是 0。所以这种状态被称为非法状态,非法状态是无法进行状态转移的,于是我们可以通过初始状态和非法状态进所有状态进行初始化。

d

p

[

0

]

[

i

]

=

{

0

i

=

0

i

n

f

i

0

dp[0][i] = \begin{cases} 0 & i = 0\ inf & i > 0\end{cases}

dp[0][i]={0inf​i=0i>0​
  其中

i

n

f

inf

inf 在程序实现时,我们可以设定一个非常小的数,比如

1000000000

-1000000000

−1000000000,只要保证无论如何状态转移它都不能成为最优解的候选状态。为了加深状态转移的概念,来看图二-5-1 的一个例子,每个格子代表一个状态,

(

0

,

0

)

(0,0)

(0,0) 代表初始状态,蓝色的格子代表已经求得的状态,灰色的格子代表非法状态,红色的格子代表当前正在进行转移的状态,图中的第

i

i

i 行代表了前

i

i

i 个物品对应容量的最优值,第 4 个物品的容量为 2,价值为 8,则有状态转移如下:

d

p

[

4

]

[

4

]

=

m

a

x

(

d

p

[

4

1

]

[

4

]

,

d

p

[

4

1

]

[

4

2

]

8

)

=

m

a

x

(

d

p

[

3

]

[

4

]

,

d

p

[

3

]

[

2

]

8

)

\begin{aligned} dp[4][4] &= max( dp[4-1][4], dp[4-1][4 - 2] + 8) \ &= max( dp[3][4], dp[3][2] + 8) \end{aligned}

dp[4][4]​=max(dp[4−1][4],dp[4−1][4−2]+8)=max(dp[3][4],dp[3][2]+8)​

  有关 0/1 背包的更多内容,可以参考:夜深人静写算法(十四)- 0/1 背包

2、完全背包

n

(

n

100

)

n(n \le 100)

n(n≤100) 种物品和一个容量为

m

(

m

10000

)

m(m \le 10000)

m(m≤10000) 的背包。第

i

i

i 种物品的容量是

c

[

i

]

c[i]

c[i],价值是

w

[

i

]

w[i]

w[i]。现在需要选择一些物品放入背包,每种物品可以无限选择,并且总容量不能超过背包容量,求能够达到的物品的最大总价值。

以上就是完全背包问题的完整描述,和 0/1 背包的区别就是每种物品可以无限选取,即文中红色字体标注的内容;
  第一步:设计状态;
  状态

(

i

,

j

)

(i, j)

(i,j) 表示前

i

i

i 种物品恰好放入容量为

j

j

j 的背包

(

i

[

0

,

n

]

,

j

[

0

,

m

]

)

(i \in [0, n], j \in [0, m])

(i∈[0,n],j∈[0,m]);
  令

d

p

[

i

]

[

j

]

dp[i][j]

dp[i][j] 表示状态

(

i

,

j

)

(i, j)

(i,j) 下该背包得到的最大价值,即前

i

i

i 种物品(每种物品可以选择无限件)恰好放入容量为

j

j

j 的背包所得到的最大总价值;

第二步:列出状态转移方程;

d

p

[

i

]

[

j

]

=

m

a

x

(

d

p

[

i

1

]

[

j

c

[

i

]

k

]

w

[

i

]

k

)

dp[i][j] = max(dp[i-1][j - c[i]*k] + w[i]*k)

dp[i][j]=max(dp[i−1][j−c[i]∗k]+w[i]∗k)

(

0

k

j

c

[

i

]

)

(0 \le k \le \frac {j} {c[i]})

(0≤k≤c[i]j​)

  • 因为每种物品有无限种可放置,将它归类为以下两种情况:
      1)不放:如果 “第

i

i

i 种物品不放入容量为

j

j

j 的背包”,那么问题转化成求 “前

i

1

i-1

i−1 种物品放入容量为

j

j

j 的背包” 的问题;由于不放,所以最大价值就等于 “前

i

1

i-1

i−1 种物品放入容量为

j

j

j 的背包” 的最大价值,对应状态转移方程中

k

=

0

k = 0

k=0 的情况, 即

d

p

[

i

1

]

[

j

]

dp[i-1][j]

dp[i−1][j];
  2)放 k 个:如果 “第

i

i

i 种物品放入容量为

j

j

j 的背包”,那么问题转化成求 “前

i

1

i-1

i−1 种物品放入容量为

j

c

[

i

]

k

j-c[i]*k

j−c[i]∗k 的背包” 的问题;那么此时最大价值就等于 “前

i

1

i-1

i−1 种物品放入容量为

j

c

[

i

]

k

j-c[i]*k

j−c[i]∗k 的背包” 的最大价值 加上放入

k

k

k 个第

i

i

i 种物品的价值,即

d

p

[

i

1

]

[

j

c

[

i

]

k

]

w

[

i

]

k

dp[i-1][j - c[i]*k] + w[i]*k

dp[i−1][j−c[i]∗k]+w[i]∗k;
  枚举所有满足条件的

k

k

k 就是我们所求的 “前

i

i

i 种物品恰好放入容量为

j

j

j 的背包” 的最大价值了。注意:由于每件物品都可以无限选择,所以这里描述的时候都是用的 “种” 作为单位,即代表不同种类的物品。

对于

n

n

n 种物品放入一个容量为

m

m

m 的背包,状态数为

O

(

n

m

)

O(nm)

O(nm),每次状态转移的消耗为

O

(

k

)

O(k)

O(k),所以整个状态转移的过程时间复杂度是大于

O

(

n

m

)

O(nm)

O(nm) 的,那么实际是多少呢?考虑最坏情况下,即

c

[

i

]

=

1

c[i] = 1

c[i]=1 时,那么要计算的

d

p

[

i

]

[

j

]

dp[i][j]

dp[i][j] 的转移数为

j

j

j,总的状态转移次数就是

m

(

m

1

)

2

\frac {m(m + 1)} {2}

2m(m+1)​,所以整个算法的时间复杂度是

O

(

n

m

2

)

O(nm^2)

O(nm2) 的,也就是说状态转移均摊时间复杂度是

O

(

m

)

O(m)

O(m) 的。

我们把状态转移方程进行展开后得到如下的

k

1

k+1

k+1 个式子:

d

p

[

i

]

[

j

]

=

m

a

x

{

d

p

[

i

1

]

[

j

]

(

1

)

d

p

[

i

1

]

[

j

c

[

i

]

]

w

[

i

]

(

2

)

d

p

[

i

1

]

[

j

c

[

i

]

2

]

w

[

i

]

2

(

3

)

.

.

.

d

p

[

i

1

]

[

j

c

[

i

]

k

]

w

[

i

]

k

(

k

1

)

dp[i][j] = max \begin{cases} dp[i-1][j] & (1)\ dp[i-1][j - c[i]] + w[i] & (2)\ dp[i-1][j - c[i]*2] + w[i]*2 & (3)\ … \ dp[i-1][j - c[i]*k] + w[i] *k & (k+1) \end{cases}

dp[i][j]=max⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧​dp[i−1][j]dp[i−1][j−c[i]]+w[i]dp[i−1][j−c[i]∗2]+w[i]∗2…dp[i−1][j−c[i]∗k]+w[i]∗k​(1)(2)(3)(k+1)​
  利用待定系数法,用

j

c

[

i

]

j-c[i]

j−c[i] 代替上式的

j

j

j 得到如下式子:

d

p

[

i

]

[

j

c

[

i

]

]

=

m

a

x

{

d

p

[

i

1

]

[

j

c

[

i

]

]

(

1

)

d

p

[

i

1

]

[

j

c

[

i

]

2

]

w

[

i

]

(

2

)

d

p

[

i

1

]

[

j

c

[

i

]

3

]

w

[

i

]

2

(

3

)

.

.

.

d

p

[

i

1

]

[

j

c

[

i

]

k

]

w

[

i

]

(

k

1

)

(

k

)

dp[i][j-c[i]] = max \begin{cases} dp[i-1][j-c[i]] & (1)\ dp[i-1][j - c[i]*2] + w[i] & (2)\ dp[i-1][j - c[i]*3] + w[i]*2 & (3)\ … \ dp[i-1][j - c[i]*k] + w[i] *(k-1) & (k) \end{cases}

dp[i][j−c[i]]=max⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧​dp[i−1][j−c[i]]dp[i−1][j−c[i]∗2]+w[i]dp[i−1][j−c[i]∗3]+w[i]∗2…dp[i−1][j−c[i]∗k]+w[i]∗(k−1)​(1)(2)(3)(k)​
  等式两边都加上

w

[

i

]

w[i]

w[i] 得到:

d

p

[

i

]

[

j

c

[

i

]

]

w

[

i

]

=

m

a

x

{

d

p

[

i

1

]

[

j

c

[

i

]

]

w

[

i

]

(

1

)

d

p

[

i

1

]

[

j

c

[

i

]

2

]

w

[

i

]

2

(

2

)

d

p

[

i

1

]

[

j

c

[

i

]

3

]

w

[

i

]

3

(

3

)

.

.

.

d

p

[

i

1

]

[

j

c

[

i

]

k

]

w

[

i

]

k

(

k

)

dp[i][j-c[i]] + w[i] = max \begin{cases} dp[i-1][j-c[i]] + w[i] & (1)\ dp[i-1][j - c[i]*2] + w[i]*2 & (2)\ dp[i-1][j - c[i]*3] + w[i]*3 & (3)\ … \ dp[i-1][j - c[i]*k] + w[i] *k & (k) \end{cases}

dp[i][j−c[i]]+w[i]=max⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧​dp[i−1][j−c[i]]+w[i]dp[i−1][j−c[i]∗2]+w[i]∗2dp[i−1][j−c[i]∗3]+w[i]∗3…dp[i−1][j−c[i]∗k]+w[i]∗k​(1)(2)(3)(k)​
  于是我们发现,这里的

(

1

)

.

.

.

(

k

)

(1)…(k)

(1)…(k) 式子等价于最开始的状态转移方程中的

(

2

)

.

.

.

(

k

1

)

(2) … (k+1)

(2)…(k+1) 式,所以原状态转移方程可以简化为:

d

p

[

i

]

[

j

]

=

m

a

x

(

d

p

[

i

1

]

[

j

]

,

d

p

[

i

]

[

j

c

[

i

]

]

w

[

i

]

)

dp[i][j] = max(dp[i-1][j], dp[i][j-c[i]] + w[i])

dp[i][j]=max(dp[i−1][j],dp[i][j−c[i]]+w[i])
  这样就把原本均摊时间复杂度为

O

(

m

)

O(m)

O(m) 的状态转移优化到了

O

(

1

)

O(1)

O(1)。
  那么我们来理解一下这个状态转移方程的含义:对于第

i

i

i 种物品,其实只有两种选择:一个都不放、至少放一个;一个都不放 就是 “前

i

1

i-1

i−1 种物品放满一个容量为

j

j

j 的背包” 的情况,即

d

p

[

i

1

]

[

j

]

dp[i-1][j]

dp[i−1][j];至少放一个 的话,我们尝试在 “前

i

i

i 种物品放满一个容量为

j

j

j 的背包” 里拿掉 1 个物品,即 “前

i

i

i 种物品放满一个容量为

j

c

[

i

]

j-c[i]

j−c[i] 的背包”,这时候的值就是

d

p

[

i

]

[

j

c

[

i

]

]

w

[

i

]

dp[i][j-c[i]] + w[i]

dp[i][j−c[i]]+w[i]。取两者的大者就是答案了。
  其实这个思路我可以在本文开头就讲,也容易理解,之所以引入优化以及逐步推导的过程,就是想告诉读者,很多动态规划的问题是不能套用模板的,从简单的思路出发,加上一些推导和优化,逐步把复杂的问题循序渐进的求出来,才是解决问题的普遍思路。
  有关完全背包的更多内容,可以参考:夜深人静写算法(十五)- 完全背包

3、多重背包

n

(

n

100

)

n(n \le 100)

n(n≤100) 种物品和一个容量为

m

(

m

10000

)

m(m \le 10000)

m(m≤10000) 的背包。第

i

i

i 种物品的容量是

c

[

i

]

c[i]

c[i],价值是

w

[

i

]

w[i]

w[i]。现在需要选择一些物品放入背包,每种物品可以选择

x

[

i

]

x[i]

x[i] 件,并且总容量不能超过背包容量,求能够达到的物品的最大总价值。

以上就是多重背包问题的完整描述,和 0/1 背包、完全背包的区别就是每种物品的选取有物品自己的值域限制,即文中红色字体标注的内容;
  第一步:设计状态;
  状态

(

i

,

j

)

(i, j)

(i,j) 表示前

i

i

i 种物品恰好放入容量为

j

j

j 的背包

(

i

[

0

,

n

]

,

j

[

0

,

m

]

)

(i \in [0, n], j \in [0, m])

(i∈[0,n],j∈[0,m]);
  令

d

p

[

i

]

[

j

]

dp[i][j]

dp[i][j] 表示状态

(

i

,

j

)

(i, j)

(i,j) 下该背包得到的最大价值,即前

i

i

i 种物品(每种物品可以选择

x

[

i

]

x[i]

x[i] 件)恰好放入容量为

j

j

j 的背包所得到的最大总价值;

第二步:列出状态转移方程;

d

p

[

i

]

[

j

]

=

m

a

x

(

d

p

[

i

1

]

[

j

c

[

i

]

k

]

w

[

i

]

k

)

(

0

k

x

[

i

]

)

dp[i][j] = max(dp[i-1][j - c[i]*k] + w[i]*k) \ (0 \le k \le x[i])

dp[i][j]=max(dp[i−1][j−c[i]∗k]+w[i]∗k)(0≤k≤x[i]) 因为每种物品有

x

[

i

]

x[i]

x[i] 种可放置,将它归类为以下两种情况:
  1)不放:如果 “第

i

i

i 种物品不放入容量为

j

j

j 的背包”,那么问题转化成求 “前

i

1

i-1

i−1 种物品放入容量为

j

j

j 的背包” 的问题;由于不放,所以最大价值就等于 “前

i

1

i-1

i−1 种物品放入容量为

j

j

j 的背包” 的最大价值,对应状态转移方程中

k

=

0

k = 0

k=0 的情况, 即

d

p

[

i

1

]

[

j

]

dp[i-1][j]

dp[i−1][j];
  2)放 k 个:如果 “第

i

i

i 种物品放入容量为

j

j

j 的背包”,那么问题转化成求 “前

i

1

i-1

i−1 种物品放入容量为

j

c

[

i

]

k

j-c[i]*k

j−c[i]∗k 的背包” 的问题;那么此时最大价值就等于 “前

i

1

i-1

i−1 种物品放入容量为

j

c

[

i

]

k

j-c[i]*k

j−c[i]∗k 的背包” 的最大价值 加上放入

k

k

k 个第

i

i

i 种物品的价值,即

d

p

[

i

1

]

[

j

c

[

i

]

k

]

w

[

i

]

k

dp[i-1][j - c[i]*k] + w[i]*k

dp[i−1][j−c[i]∗k]+w[i]∗k;
  枚举所有满足条件的

k

k

k 就是我们所求的 “前

i

i

i 种物品恰好放入容量为

j

j

j 的背包” 的最大价值了。
  多重背包问题是背包问题的一般情况,每种物品有自己的值域限制。如果从状态转移方程出发,我们可以把三种背包问题进行归纳统一,得到一个统一的状态转移方程如下:

d

p

[

i

]

[

j

]

=

m

a

x

(

d

p

[

i

1

]

[

j

c

[

i

]

k

]

w

[

i

]

k

)

dp[i][j] = max(dp[i-1][j - c[i]*k] + w[i]*k)

dp[i][j]=max(dp[i−1][j−c[i]∗k]+w[i]∗k)  对于 0/1 背包问题,

k

k

k 的取值为

0

,

1

0,1

0,1;
  对于完全背包问题,

k

k

k 的取值为

0

,

1

,

2

,

3

,

.

.

.

,

j

c

[

i

]

0, 1, 2, 3, …, \lfloor \frac j {c[i]} \rfloor

0,1,2,3,…,⌊c[i]j​⌋;
  对于多重背包问题,

k

k

k 的取值为

0

,

1

,

2

,

3

,

.

.

.

,

x

[

i

]

0, 1, 2, 3, …, x[i]

0,1,2,3,…,x[i];
  对于

n

n

n 种物品放入一个容量为

m

m

m 的背包,状态数为

O

(

n

m

)

O(nm)

O(nm),每次状态转移的消耗为

O

(

x

[

i

]

)

O(x[i])

O(x[i]),所以整个状态转移的过程时间复杂度是大于

O

(

n

m

)

O(nm)

O(nm) 的,那么实际是多少呢?
  考虑最坏情况下,即

x

[

i

]

=

m

x[i] = m

x[i]=m 时,那么要计算的

d

p

[

i

]

[

j

]

dp[i][j]

dp[i][j] 的转移数为

j

j

j,总的状态转移次数就是

m

(

m

1

)

2

\frac {m(m + 1)} {2}

2m(m+1)​,所以整个算法的时间复杂度是

O

(

n

m

2

)

O(nm^2)

O(nm2) 的,也就是说状态转移均摊时间复杂度是

O

(

m

)

O(m)

O(m) 的。
  一个容易想到的优化是:我们可以将每种物品拆成

x

[

i

]

x[i]

x[i] 个,这样变成了

i

=

1

n

x

[

i

]

\sum_{i=1}^n x[i]

∑i=1n​x[i] 个物品的 0/1 背包问题,我们知道 0/1 背包问题优化完以后,空间复杂度只和容量有关,即

O

(

m

)

O(m)

O(m)。
  所以多重背包问题的空间复杂度至少是可以优化到

O

(

m

)

O(m)

O(m) 的。
  然而, 如果这样拆分,时间复杂度还是没有变化,但是给我们提供了一个思路,就是每种物品是可以拆分的。假设有

x

[

i

]

x[i]

x[i] 个物品,我们可以按照 2 的幂进行拆分,把它拆分成:

1

,

2

,

4

,

.

.

.

,

2

k

1

,

x

[

i

]

2

k

1

1, 2, 4, …, 2^{k-1}, x[i] - 2^{k} + 1

1,2,4,…,2k−1,x[i]−2k+1
  其中

k

k

k 是最大的满足

x

[

i

]

2

k

1

0

x[i] - 2^{k} + 1 \ge 0

x[i]−2k+1≥0 的非负整数。
  这样,1 到

x

[

i

]

x[i]

x[i] 之间的所有整数都能通过以上

k

1

k+1

k+1 个数字组合出来,所以只要拆成以上

k

1

k+1

k+1 个物品,所有取

k

(

0

k

x

[

i

]

)

k (0 \le k \le x[i])

k(0≤k≤x[i]) 个物品的情况都能被考虑进来。
  举例说明,当

x

[

i

]

=

14

x[i] = 14

x[i]=14 时,可以拆分成 1,2,4,7 个物品,那么当我们要取 13 个这类物品的时候,相当于选择 2、4、7,容量分别为

c

[

i

]

2

,

c

[

i

]

4

,

c

[

i

]

7

c[i]*2, c[i]*4, c[i]* 7

c[i]∗2,c[i]∗4,c[i]∗7, 价值分别为

w

[

i

]

2

,

w

[

i

]

4

,

w

[

i

]

7

w[i]*2, w[i]*4, w[i]* 7

w[i]∗2,w[i]∗4,w[i]∗7。
  通过这种拆分方式,

x

[

i

]

x[i]

x[i] 最多被拆分成

l

o

g

2

x

[

i

]

log_2 {x[i]}

log2​x[i] 个物品,然后再用 0/1 背包求解,得到了一个时间复杂度为

O

(

m

i

=

1

n

l

o

g

2

x

[

i

]

)

O(m\sum_{i=1}^{n}log_2{x[i]})

O(m∑i=1n​log2​x[i]) 的算法。
  有关多重背包的更多内容,可以参考:夜深人静写算法(十六)- 多重背包

4、分组背包

n

(

n

1000

)

n(n \le 1000)

n(n≤1000) 个物品和一个容量为

m

(

m

1000

)

m(m \le 1000)

m(m≤1000) 的背包。这些物品被分成若干组,第

i

i

i 个物品属于

g

[

i

]

g[i]

g[i] 组,容量是

c

[

i

]

c[i]

c[i],价值是

w

[

i

]

w[i]

w[i],现在需要选择一些物品放入背包,并且每组最多放一个物品,总容量不能超过背包容量,求能够达到的物品的最大总价值。

以上就是分组背包问题的完整描述,和其它背包问题的区别就是每个物品多了一个组号,并且相同组内,最多只能选择一个物品放入背包;因为只有一个物品,所以读者可以暂时忘掉 完全背包 和 多重背包 的概念,在往下看之前,先回忆一下 0/1 背包的状态转移方程。

第一步:预处理;
  首先把每个物品按照组号

g

[

i

]

g[i]

g[i] 从小到大排序,假设总共有

t

t

t 组,则将

g

[

i

]

g[i]

g[i] 按顺序离散到

[

1

,

t

]

[1,t]

[1,t] 的正整数。这样做的目的是为了将

g

[

i

]

g[i]

g[i] 作为下标映射到状态数组中;

  第二步:设计状态;
  状态

(

k

,

j

)

(k, j)

(k,j) 表示前

k

k

k 组物品恰好放入容量为

j

j

j 的背包

(

k

[

0

,

t

]

,

j

[

0

,

m

]

)

(k \in [0, t], j \in [0, m])

(k∈[0,t],j∈[0,m]);令

d

p

[

k

]

[

j

]

dp[k][j]

dp[k][j] 表示状态

(

k

,

j

)

(k, j)

(k,j) 下该背包得到的最大价值,即前

k

k

k 组物品(每组物品至多选一件)恰好放入容量为

j

j

j 的背包所得到的最大总价值;

第三步:列出状态转移方程:

d

p

[

k

]

[

j

]

=

m

a

x

(

d

p

[

k

1

]

[

j

]

,

d

p

[

k

1

]

[

j

c

[

i

]

]

w

[

i

]

)

dp[k][j] = max(dp[k-1][j], dp[k-1][j - c[i]] + w[i])

dp[k][j]=max(dp[k−1][j],dp[k−1][j−c[i]]+w[i])

k

=

g

[

i

]

k = g[i]

k=g[i]因为每个物品有只有两种情况:
  1)不放:如果 “第

i

i

i 个物品(属于第

k

k

k 组)不放入容量为

j

j

j 的背包”,那么问题转化成求 “前

k

1

k-1

k−1 组物品放入容量为

j

j

j 的背包” 的问题;由于不放,所以最大价值就等于 “前

k

1

k-1

k−1 组物品放入容量为

j

j

j 的背包” 的最大价值,对应状态转移方程中的

d

p

[

k

1

]

[

j

]

dp[k-1][j]

dp[k−1][j];
  2)放:如果 “第

i

i

i 个物品(属于第

k

k

k 组)放入容量为

j

j

j 的背包”,那么问题转化成求 “前

k

1

k-1

k−1 组物品放入容量为

j

c

[

i

]

j-c[i]

j−c[i] 的背包” 的问题;那么此时最大价值就等于 “前

k

1

k-1

k−1 组物品放入容量为

j

c

[

i

]

j-c[i]

j−c[i] 的背包” 的最大价值 加上放入第

i

i

i 个物品的价值,即

d

p

[

k

1

]

[

j

c

[

i

]

]

w

[

i

]

dp[k-1][j - c[i]] + w[i]

dp[k−1][j−c[i]]+w[i];
  因为 前

k

1

k-1

k−1 组物品中一定不存在第

k

k

k 组中的物品,所以能够满足 “最多放一个” 这个条件;

对于

n

n

n 个物品放入一个容量为

m

m

m 的背包,状态数为

O

(

n

m

)

O(nm)

O(nm),每次状态转移的消耗为

O

(

1

)

O(1)

O(1),所以整个状态转移的过程时间复杂度是

O

(

n

m

)

O(nm)

O(nm);
  注意在分组背包求解的时候,要保证相同组的在一起求,而一开始的预处理和离散化正式为了保证这一点,这样,每个物品的组号为

g

[

i

]

=

1

,

2

,

3

,

4…

,

t

g[i] = 1,2,3,4…,t

g[i]=1,2,3,4…,t,并且我们可以把状态转移方程进一步表示成和

k

k

k 无关的,如下:

d

p

[

g

[

i

]

]

[

j

]

=

m

a

x

(

d

p

[

g

[

i

]

1

]

[

j

]

,

d

p

[

g

[

i

]

1

]

[

j

c

[

i

]

]

w

[

i

]

)

dp[ g[i] ][j] = max(dp[ g[i]-1][j], dp[ g[i]-1][j - c[i]] + w[i])

dp[g[i]][j]=max(dp[g[i]−1][j],dp[g[i]−1][j−c[i]]+w[i])
  有关分组背包更加详细的内容,可以参考:夜深人静写算法(十七)- 分组背包

5、依赖背包

商店里有

n

(

n

50

)

n(n \le 50)

n(n≤50) 个盒子,每个盒子价钱为

p

[

i

]

(

p

[

i

]

1000

)

p[i](p[i] \le 1000)

pi,价值为 0,盒子里面有一些小礼物,数量为

m

[

i

]

(

1

m

[

i

]

10

)

m[i](1 \le m[i] \le 10)

mi,每个小礼物描述成一个二元组

(

c

,

v

)

(c, v)

(c,v),

c

c

c 为价钱,

v

v

v 为价值,如果要买小礼物,必须先买盒子。现在给出价钱

m

(

m

100000

)

m(m \le 100000)

m(m≤100000),求能够买到的最大价值。

这是一个比较特殊的依赖性背包问题,也是依赖背包中最简单的情况,其中盒子作为 主件,小礼物作为 附件。想要购买附件,必须先购买主件,此所谓 “依赖” ;

第一步:设计状态;
  状态

(

i

,

j

)

(i, j)

(i,j) 表示前

i

i

i 个盒子购买的价钱恰好为

j

j

j

(

i

[

0

,

n

]

,

j

[

0

,

m

]

)

(i \in [0, n], j \in [0, m])

(i∈[0,n],j∈[0,m]);
  令

d

p

[

i

]

[

j

]

dp[i][j]

dp[i][j] 表示状态

(

i

,

j

)

(i, j)

(i,j) 下得到的最大价值,即前

i

i

i 个盒子购买价钱为

j

j

j 的情况下所得到的最大总价值;

我们在设计状态的时候,没有把小礼物设计到状态里,那么如何进行状态转移呢?
在这里插入图片描述
  可以这么考虑,抛开小礼物不说,每个盒子其实只有两种状态,选 和 不选;
  1)选:就是要对这个盒子里的小礼物进行一次 0/1 背包;
  2)不选:就和这盒子里的小礼物无关了,直接等于前

i

1

i-1

i−1 个盒子的最大价值,即

d

p

[

i

1

]

[

j

]

dp[i-1][j]

dp[i−1][j]。
  那么,只要从前往后枚举所有盒子,

p

[

i

]

p[i]

p[i] 为第

i

i

i 个盒子的价钱,

w

[

i

]

w[i]

w[i] 为价值,由于这个问题下盒子是没有价值的,即

w

[

i

]

w[i]

w[i] 恒等于零;

进行如下三步操作:
  1)首先,买第

i

i

i 个盒子,并且不放物品;
  2)然后,既然盒子都已经买下来了,就可以放心对第

i

i

i 个盒子里的小礼物进行 0/1 背包了;
  3)最后,对 买盒子

i

i

i 和 不买盒子

i

i

i 取一次最大价值;

买第

i

i

i 个盒子,不放物品的情况肯定是从前

i

1

i-1

i−1 个盒子的状态推算过来的,给出状态转移方程如下:

d

p

[

i

]

[

j

]

=

{

i

n

f

j

<

p

[

i

]

(

1

)

d

p

[

i

1

]

[

j

p

[

i

]

]

w

[

i

]

j

p

[

i

]

(

2

)

dp[i][j] =\begin{cases}inf & j < p[i] & (1)\dp[i-1][j - p[i]]+w[i] & j \ge p[i] & (2)\end{cases}

dp[i][j]={infdp[i−1][j−p[i]]+w[i]​j<p[i]j≥p[i]​(1)(2)​

  • (1) 代表钱不够,无限凄凉;(2) 代表从 前

i

1

i-1

i−1 个盒子价格为

j

p

[

i

]

j - p[i]

j−p[i] 时,再花

p

[

i

]

p[i]

p[i] 买下第

i

i

i 个盒子的情况。这时候

d

p

[

i

]

[

j

]

dp[i][j]

dp[i][j] 代表的是 第

i

i

i 个盒子买下后,还没买小礼物时,容量为

j

j

j 的最大总价值;

既然盒子都已经买下来了,就可以放心对第

i

i

i 个盒子里的小礼物在

d

p

[

i

]

[

0…

m

]

dp[i][0…m]

dp[i][0…m] 上进行 0/1 背包了;所有小礼物都枚举完毕以后,得到的

d

p

[

i

]

[

j

]

dp[i][j]

dp[i][j] 代表的是 第

i

i

i 个盒子买下,并且买了若干小礼物后,容量为

j

j

j 的最大总价值;

最后,对买 这个盒子 和 不买这个盒子 做一次选择,即取一次最大价值,如下:

d

p

[

i

]

[

j

]

=

m

a

x

(

d

p

[

i

]

[

j

]

,

d

p

[

i

1

]

[

j

]

)

dp[i][j] = max(dp[i][j], dp[i-1][j])

dp[i][j]=max(dp[i][j],dp[i−1][j])
  这里的

d

p

[

i

1

]

[

j

]

dp[i-1][j]

dp[i−1][j] 正代表的是第

i

i

i 个盒子不买的情况。
  有关依赖背包的更多内容,可以参考:夜深人静写算法(十八)- 依赖背包

六、树形DP

给定一棵

n

(

n

<

=

150

)

n(n <= 150)

n(n<=150) 个结点的树,去掉一些边,使得正好出现一个

P

P

P 个结点的连通块。问去掉最少多少条边能够达到这个要求。

如图所示,一棵 10 个结点的树,我们可以去掉图中红色的边,变成两棵子树,分别为 3 个结点和 7个结点。
在这里插入图片描述
  也可以通过这样的方式,得到三颗子树,分别为 5 、4、1 个结点。
在这里插入图片描述
  对于树上的某个结点(如图的红色结点),可以选择去掉连接子树的边,也可以选择留着;每条连接子树的边的 选 和 不选,能够得到一个组合,对应了背包问题,而每棵子树的选择只能选择一种,对应了分组背包,所以可以利用这个思路来设计状态。
在这里插入图片描述
  状态设计:用

d

p

[

u

]

[

x

]

dp[u][x]

dp[u][x] 表示以

u

u

u 为根的子树,能够通过去掉一些边而得到一个正好是

x

x

x 结点的连通块(注意只包含它的子树的部分,不连接它的父结点)的最少消耗;
  状态转移思路:枚举

u

u

u 的所有子结点,对于子结点

v

v

v,递归计算

d

p

[

v

]

[

i

]

(

1

<

=

i

<

=

x

)

dp[v][i] (1 <= i <= x)

dp[v]i 所有的可能情况,如果

d

p

[

v

]

[

i

]

dp[v][i]

dp[v][i] 存在,则认为这是一个容量为

i

i

i,价值为

d

p

[

v

]

[

i

]

dp[v][i]

dp[v][i] 的物品,表示为

(

i

,

d

p

[

v

]

[

i

]

)

(i, dp[v][i])

(i,dp[v][i])。然后在结点

u

u

u 的背包上进行一次分组背包。
  初始情况:对于任何一个结点

u

u

u,它的子结点个数为

c

u

c_u

cu​,初始情况是

d

p

[

u

]

[

1

]

=

c

u

dp[u][1] = c_u

dp[u][1]=cu​,表示如果以当前这个结点为孤立点,那么它的子树都不能选,所以费用就是去掉所有连接子树的边,即子树的个数。
  状态转移:然后对于每棵子树

v

v

v 的

k

k

k 个结点的连通块,答案就是

d

p

[

v

]

[

j

k

]

d

p

[

v

]

[

k

]

1

dp[v][j-k] + dp[v][k] - 1

dp[v][j−k]+dp[v][k]−1,注意这里的 -1 的含义,因为我们一开始默认将所有连接子树的边去掉,所以这里需要补回来。
  答案处理:最后的答案就是

min

(

d

p

[

x

]

[

P

]

(

1

i

f

x

i

s

n

o

t

r

o

o

t

)

\min(dp[x][P] + (1 \ if \ x \ is \ not \ root)

min(dp[x][P]+(1 if x is not root);考虑结点为 P 的连通块只会出现在两个地方:1)和根结点相连的块,那么答案就是

d

p

[

r

o

o

t

]

[

P

]

dp[root][P]

dp[root][P];2)不和根结点相连的块,需要枚举所有结点的

d

p

[

x

]

[

P

]

1

dp[x][P] +1

dp[x][P]+1 取最小值,其中这里的 1 代表斩断

(

p

a

r

e

n

t

[

x

]

,

x

)

(parent[x], x)

(parent[x],x) 这条边的消耗;

七、矩阵二分

A

n

=

[

a

11

a

12

a

1

m

a

21

a

22

a

2

m

a

m

1

a

m

2

a

m

m

]

n

A^n=\begin{bmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1m}}\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2m}}\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\ {a_{m1}}&{a_{m2}}&{\cdots}&{a_{mm}}\ \end{bmatrix}^n

An=⎣⎢⎢⎢⎡​a11​a21​⋮am1​​a12​a22​⋮am2​​⋯⋯⋱⋯​a1m​a2m​⋮amm​​⎦⎥⎥⎥⎤​n
  对于求矩阵的

n

n

n 次幂,如果采用简单的连乘来求解,这个时间复杂度是完全无法接受的,我们联想到之前提到的整数的二分快速幂(夜深人静写算法(三十)- 二分快速幂),对于矩阵也是同样适用的;

A

n

=

{

I

n

=

0

(

A

n

1

2

)

2

×

A

n

(

A

n

2

)

2

n

A^{n} = \begin{cases} I & n = 0\ (A{\frac{n-1}{2}})2 \times A& n 为奇数\ (A{\frac{n}{2}})2 & n 为非零偶数 \end{cases}

An=⎩⎪⎨⎪⎧​I(A2n−1​)2×A(A2n​)2​n=0n为奇数n为非零偶数​
  再加上模加、模乘的性质,矩阵同样满足模幂运算,即:

A

n

m

o

d

M

=

{

I

m

o

d

M

n

=

0

(

A

n

1

2

)

2

×

A

m

o

d

M

n

(

A

n

2

)

2

m

o

d

M

n

A^{n} \mod M = \begin{cases} I \mod M & n = 0\ (A{\frac{n-1}{2}})2 \times A \mod M & n 为奇数\ (A{\frac{n}{2}})2 \mod M & n 为非零偶数 \end{cases}

AnmodM=⎩⎪⎨⎪⎧​ImodM(A2n−1​)2×AmodM(A2n​)2modM​n=0n为奇数n为非零偶数​
  如此一来,对于

m

m

m 阶方阵

A

A

A,时间复杂度就可以降到

O

(

m

3

l

o

g

n

)

O(m^3log_n)

O(m3logn​);
  还是回到本文开头的那个问题,如何计算斐波那契数列第

n

n

n 项模上

M

M

M ?相信聪明的读者已经想到了,我们的主角是:矩阵
  我们首先来看递推公式:

f

(

n

)

=

f

(

n

1

)

f

(

n

2

)

f(n) = f(n-1) + f(n-2)

f(n)=f(n−1)+f(n−2)  然后我们联想到:1 个

2

×

2

2 \times 2

2×2 的矩阵和 1 个

2

×

1

2 \times 1

2×1 的矩阵相乘,得到的还是一个

2

×

1

2 \times 1

2×1 的矩阵;
  首先,利用递推公式填充 列向量 和 矩阵 :

[

f

(

n

)

?

]

=

[

1

1

?

?

]

[

f

(

n

1

)

f

(

n

2

)

]

\left[ \begin{matrix} f(n) \ ? \end{matrix} \right] = \left[ \begin{matrix} 1 & 1 \ ? & ?\end{matrix} \right] \left[ \begin{matrix} f(n-1) \ f(n-2)\end{matrix} \right]

[f(n)?​]=[1?​1?​][f(n−1)f(n−2)​]  接下来利用列向量的传递性把带有问号的列向量补全,得到:

[

f

(

n

)

f

(

n

1

)

]

=

[

1

1

?

?

]

[

f

(

n

1

)

f

(

n

2

)

]

\left[ \begin{matrix} f(n) \ f(n-1)\end{matrix} \right] = \left[ \begin{matrix} 1 & 1 \ ? & ?\end{matrix} \right] \left[ \begin{matrix} f(n-1) \ f(n-2)\end{matrix} \right]

[f(n)f(n−1)​]=[1?​1?​][f(n−1)f(n−2)​]  再把带有问号的系数矩阵补全,得到:

[

f

(

n

)

f

(

n

1

)

]

=

[

1

1

1

0

]

[

f

(

n

1

)

f

(

n

2

)

]

\left[ \begin{matrix} f(n) \ f(n-1)\end{matrix} \right] = \left[ \begin{matrix} 1 & 1 \ 1 & 0\end{matrix} \right] \left[ \begin{matrix} f(n-1) \ f(n-2)\end{matrix} \right]

[f(n)f(n−1)​]=[11​10​][f(n−1)f(n−2)​]  然后进行逐步化简,得到:

[

f

(

n

给大家的福利

零基础入门

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

同时每个成长路线对应的板块都有配套的视频提供:

在这里插入图片描述

因篇幅有限,仅展示部分资料

网络安全面试题

绿盟护网行动

还有大家最喜欢的黑客技术

网络安全源码合集+工具包

所有资料共282G,朋友们如果有需要全套《网络安全入门+黑客进阶学习资源包》,可以扫描下方二维码领取(如遇扫码问题,可以在评论区留言领取哦)~

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注网络安全)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

(i,j) 下得到的最大价值,即前

i

i

i 个盒子购买价钱为

j

j

j 的情况下所得到的最大总价值;

我们在设计状态的时候,没有把小礼物设计到状态里,那么如何进行状态转移呢?
在这里插入图片描述
  可以这么考虑,抛开小礼物不说,每个盒子其实只有两种状态,选 和 不选;
  1)选:就是要对这个盒子里的小礼物进行一次 0/1 背包;
  2)不选:就和这盒子里的小礼物无关了,直接等于前

i

1

i-1

i−1 个盒子的最大价值,即

d

p

[

i

1

]

[

j

]

dp[i-1][j]

dp[i−1][j]。
  那么,只要从前往后枚举所有盒子,

p

[

i

]

p[i]

p[i] 为第

i

i

i 个盒子的价钱,

w

[

i

]

w[i]

w[i] 为价值,由于这个问题下盒子是没有价值的,即

w

[

i

]

w[i]

w[i] 恒等于零;

进行如下三步操作:
  1)首先,买第

i

i

i 个盒子,并且不放物品;
  2)然后,既然盒子都已经买下来了,就可以放心对第

i

i

i 个盒子里的小礼物进行 0/1 背包了;
  3)最后,对 买盒子

i

i

i 和 不买盒子

i

i

i 取一次最大价值;

买第

i

i

i 个盒子,不放物品的情况肯定是从前

i

1

i-1

i−1 个盒子的状态推算过来的,给出状态转移方程如下:

d

p

[

i

]

[

j

]

=

{

i

n

f

j

<

p

[

i

]

(

1

)

d

p

[

i

1

]

[

j

p

[

i

]

]

w

[

i

]

j

p

[

i

]

(

2

)

dp[i][j] =\begin{cases}inf & j < p[i] & (1)\dp[i-1][j - p[i]]+w[i] & j \ge p[i] & (2)\end{cases}

dp[i][j]={infdp[i−1][j−p[i]]+w[i]​j<p[i]j≥p[i]​(1)(2)​

  • (1) 代表钱不够,无限凄凉;(2) 代表从 前

i

1

i-1

i−1 个盒子价格为

j

p

[

i

]

j - p[i]

j−p[i] 时,再花

p

[

i

]

p[i]

p[i] 买下第

i

i

i 个盒子的情况。这时候

d

p

[

i

]

[

j

]

dp[i][j]

dp[i][j] 代表的是 第

i

i

i 个盒子买下后,还没买小礼物时,容量为

j

j

j 的最大总价值;

既然盒子都已经买下来了,就可以放心对第

i

i

i 个盒子里的小礼物在

d

p

[

i

]

[

0…

m

]

dp[i][0…m]

dp[i][0…m] 上进行 0/1 背包了;所有小礼物都枚举完毕以后,得到的

d

p

[

i

]

[

j

]

dp[i][j]

dp[i][j] 代表的是 第

i

i

i 个盒子买下,并且买了若干小礼物后,容量为

j

j

j 的最大总价值;

最后,对买 这个盒子 和 不买这个盒子 做一次选择,即取一次最大价值,如下:

d

p

[

i

]

[

j

]

=

m

a

x

(

d

p

[

i

]

[

j

]

,

d

p

[

i

1

]

[

j

]

)

dp[i][j] = max(dp[i][j], dp[i-1][j])

dp[i][j]=max(dp[i][j],dp[i−1][j])
  这里的

d

p

[

i

1

]

[

j

]

dp[i-1][j]

dp[i−1][j] 正代表的是第

i

i

i 个盒子不买的情况。
  有关依赖背包的更多内容,可以参考:夜深人静写算法(十八)- 依赖背包

六、树形DP

给定一棵

n

(

n

<

=

150

)

n(n <= 150)

n(n<=150) 个结点的树,去掉一些边,使得正好出现一个

P

P

P 个结点的连通块。问去掉最少多少条边能够达到这个要求。

如图所示,一棵 10 个结点的树,我们可以去掉图中红色的边,变成两棵子树,分别为 3 个结点和 7个结点。
在这里插入图片描述
  也可以通过这样的方式,得到三颗子树,分别为 5 、4、1 个结点。
在这里插入图片描述
  对于树上的某个结点(如图的红色结点),可以选择去掉连接子树的边,也可以选择留着;每条连接子树的边的 选 和 不选,能够得到一个组合,对应了背包问题,而每棵子树的选择只能选择一种,对应了分组背包,所以可以利用这个思路来设计状态。
在这里插入图片描述
  状态设计:用

d

p

[

u

]

[

x

]

dp[u][x]

dp[u][x] 表示以

u

u

u 为根的子树,能够通过去掉一些边而得到一个正好是

x

x

x 结点的连通块(注意只包含它的子树的部分,不连接它的父结点)的最少消耗;
  状态转移思路:枚举

u

u

u 的所有子结点,对于子结点

v

v

v,递归计算

d

p

[

v

]

[

i

]

(

1

<

=

i

<

=

x

)

dp[v][i] (1 <= i <= x)

dp[v]i 所有的可能情况,如果

d

p

[

v

]

[

i

]

dp[v][i]

dp[v][i] 存在,则认为这是一个容量为

i

i

i,价值为

d

p

[

v

]

[

i

]

dp[v][i]

dp[v][i] 的物品,表示为

(

i

,

d

p

[

v

]

[

i

]

)

(i, dp[v][i])

(i,dp[v][i])。然后在结点

u

u

u 的背包上进行一次分组背包。
  初始情况:对于任何一个结点

u

u

u,它的子结点个数为

c

u

c_u

cu​,初始情况是

d

p

[

u

]

[

1

]

=

c

u

dp[u][1] = c_u

dp[u][1]=cu​,表示如果以当前这个结点为孤立点,那么它的子树都不能选,所以费用就是去掉所有连接子树的边,即子树的个数。
  状态转移:然后对于每棵子树

v

v

v 的

k

k

k 个结点的连通块,答案就是

d

p

[

v

]

[

j

k

]

d

p

[

v

]

[

k

]

1

dp[v][j-k] + dp[v][k] - 1

dp[v][j−k]+dp[v][k]−1,注意这里的 -1 的含义,因为我们一开始默认将所有连接子树的边去掉,所以这里需要补回来。
  答案处理:最后的答案就是

min

(

d

p

[

x

]

[

P

]

(

1

i

f

x

i

s

n

o

t

r

o

o

t

)

\min(dp[x][P] + (1 \ if \ x \ is \ not \ root)

min(dp[x][P]+(1 if x is not root);考虑结点为 P 的连通块只会出现在两个地方:1)和根结点相连的块,那么答案就是

d

p

[

r

o

o

t

]

[

P

]

dp[root][P]

dp[root][P];2)不和根结点相连的块,需要枚举所有结点的

d

p

[

x

]

[

P

]

1

dp[x][P] +1

dp[x][P]+1 取最小值,其中这里的 1 代表斩断

(

p

a

r

e

n

t

[

x

]

,

x

)

(parent[x], x)

(parent[x],x) 这条边的消耗;

七、矩阵二分

A

n

=

[

a

11

a

12

a

1

m

a

21

a

22

a

2

m

a

m

1

a

m

2

a

m

m

]

n

A^n=\begin{bmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1m}}\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2m}}\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\ {a_{m1}}&{a_{m2}}&{\cdots}&{a_{mm}}\ \end{bmatrix}^n

An=⎣⎢⎢⎢⎡​a11​a21​⋮am1​​a12​a22​⋮am2​​⋯⋯⋱⋯​a1m​a2m​⋮amm​​⎦⎥⎥⎥⎤​n
  对于求矩阵的

n

n

n 次幂,如果采用简单的连乘来求解,这个时间复杂度是完全无法接受的,我们联想到之前提到的整数的二分快速幂(夜深人静写算法(三十)- 二分快速幂),对于矩阵也是同样适用的;

A

n

=

{

I

n

=

0

(

A

n

1

2

)

2

×

A

n

(

A

n

2

)

2

n

A^{n} = \begin{cases} I & n = 0\ (A{\frac{n-1}{2}})2 \times A& n 为奇数\ (A{\frac{n}{2}})2 & n 为非零偶数 \end{cases}

An=⎩⎪⎨⎪⎧​I(A2n−1​)2×A(A2n​)2​n=0n为奇数n为非零偶数​
  再加上模加、模乘的性质,矩阵同样满足模幂运算,即:

A

n

m

o

d

M

=

{

I

m

o

d

M

n

=

0

(

A

n

1

2

)

2

×

A

m

o

d

M

n

(

A

n

2

)

2

m

o

d

M

n

A^{n} \mod M = \begin{cases} I \mod M & n = 0\ (A{\frac{n-1}{2}})2 \times A \mod M & n 为奇数\ (A{\frac{n}{2}})2 \mod M & n 为非零偶数 \end{cases}

AnmodM=⎩⎪⎨⎪⎧​ImodM(A2n−1​)2×AmodM(A2n​)2modM​n=0n为奇数n为非零偶数​
  如此一来,对于

m

m

m 阶方阵

A

A

A,时间复杂度就可以降到

O

(

m

3

l

o

g

n

)

O(m^3log_n)

O(m3logn​);
  还是回到本文开头的那个问题,如何计算斐波那契数列第

n

n

n 项模上

M

M

M ?相信聪明的读者已经想到了,我们的主角是:矩阵
  我们首先来看递推公式:

f

(

n

)

=

f

(

n

1

)

f

(

n

2

)

f(n) = f(n-1) + f(n-2)

f(n)=f(n−1)+f(n−2)  然后我们联想到:1 个

2

×

2

2 \times 2

2×2 的矩阵和 1 个

2

×

1

2 \times 1

2×1 的矩阵相乘,得到的还是一个

2

×

1

2 \times 1

2×1 的矩阵;
  首先,利用递推公式填充 列向量 和 矩阵 :

[

f

(

n

)

?

]

=

[

1

1

?

?

]

[

f

(

n

1

)

f

(

n

2

)

]

\left[ \begin{matrix} f(n) \ ? \end{matrix} \right] = \left[ \begin{matrix} 1 & 1 \ ? & ?\end{matrix} \right] \left[ \begin{matrix} f(n-1) \ f(n-2)\end{matrix} \right]

[f(n)?​]=[1?​1?​][f(n−1)f(n−2)​]  接下来利用列向量的传递性把带有问号的列向量补全,得到:

[

f

(

n

)

f

(

n

1

)

]

=

[

1

1

?

?

]

[

f

(

n

1

)

f

(

n

2

)

]

\left[ \begin{matrix} f(n) \ f(n-1)\end{matrix} \right] = \left[ \begin{matrix} 1 & 1 \ ? & ?\end{matrix} \right] \left[ \begin{matrix} f(n-1) \ f(n-2)\end{matrix} \right]

[f(n)f(n−1)​]=[1?​1?​][f(n−1)f(n−2)​]  再把带有问号的系数矩阵补全,得到:

[

f

(

n

)

f

(

n

1

)

]

=

[

1

1

1

0

]

[

f

(

n

1

)

f

(

n

2

)

]

\left[ \begin{matrix} f(n) \ f(n-1)\end{matrix} \right] = \left[ \begin{matrix} 1 & 1 \ 1 & 0\end{matrix} \right] \left[ \begin{matrix} f(n-1) \ f(n-2)\end{matrix} \right]

[f(n)f(n−1)​]=[11​10​][f(n−1)f(n−2)​]  然后进行逐步化简,得到:

[

f

(

n

给大家的福利

零基础入门

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

同时每个成长路线对应的板块都有配套的视频提供:

在这里插入图片描述

因篇幅有限,仅展示部分资料

网络安全面试题

绿盟护网行动

还有大家最喜欢的黑客技术

网络安全源码合集+工具包

所有资料共282G,朋友们如果有需要全套《网络安全入门+黑客进阶学习资源包》,可以扫描下方二维码领取(如遇扫码问题,可以在评论区留言领取哦)~

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注网络安全)
[外链图片转存中…(img-yZzTavhx-1713443643844)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 7
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值