题目描述
给你一个下标从 0 开始的数组 points ,它表示二维平面上一些点的整数坐标,其中 points[i] = [xi, yi] 。
两点之间的距离定义为它们的 曼哈顿距离 。
请你恰好移除一个点,返回移除后任意两点之间的 最大 距离可能的 最小 值。
3102.最小化曼哈顿距离
测试案例及提示
示例 1:
输入:points = [[3,10],[5,15],[10,2],[4,4]]
输出:12
解释:移除每个点后的最大距离如下所示:
移除第 0 个点后,最大距离在点 (5, 15) 和 (10, 2) 之间,为 |5 - 10| + |15 - 2| = 18 。
移除第 1 个点后,最大距离在点 (3, 10) 和 (10, 2) 之间,为 |3 - 10| + |10 - 2| = 15 。
移除第 2 个点后,最大距离在点 (5, 15) 和 (4, 4) 之间,为 |5 - 4| + |15 - 4| = 12 。
移除第 3 个点后,最大距离在点 (5, 15) 和 (10, 2) 之间的,为 |5 - 10| + |15 - 2| = 18 。
在恰好移除一个点后,任意两点之间的最大距离可能的最小值是 12 。
示例 2:
输入:points = [[1,1],[1,1],[1,1]]
输出:0
解释:移除任一点后,任意两点之间的最大距离都是 0 。
提示:
3 <= points.length <= 105
points[i].length == 2
1 <= points[i][0], points[i][1] <= 108
解题思路
直接表示曼哈顿距离的话,等于abs(x1 -x2) + abs(y1 -y2),在一个式子中有着四个变量,这对我们遍历元素来说是不方便的。因此我们应该想一种方法去简化曼哈顿距离。在这里,可以把曼哈顿距离转变成切比雪夫距离。
具体证明见:距离
使用Sortedlist来存储值,可以自动排序,如果使用常规的List就需要多次使用sorted(),会导致超时无法通过。
回到题目要求的问题:求移除一个点后的曼哈顿距离的最大值的最小值。分成两部分来看,移除后是由剩下的点产生曼哈顿距离,这时需要求出这些曼哈顿距离的最大值。另一部分是这些最大值的最小值,取min即可。因此,开始把ans设置成无穷大,而后不断和算出来的最大曼哈顿距离求min。
python
from sortedcontainers import SortedList
class Solution:
def minimumDistance(self, points: List[List[int]]) -> int:
xs = SortedList()
ys = SortedList()
for point in points:
xs.add(point[0] + point[1])
ys.add(point[1] - point[0])
ans = float('inf')
for p in points:
xs.remove(p[0] + p[1])
ys.remove(p[1] - p[0])
ans = min(ans, max(xs[-1] - xs[0], ys[-1] - ys[0]))
xs.add(p[0] + p[1])
ys.add(p[1] - p[0])
return ans