自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(22)
  • 收藏
  • 关注

原创 机器学习(7.贝叶斯分类器)

与SPODE通过模型选择确定超父属性不同,AODE尝试将每个属性作为超父来构建SPODE,然后将那些具有足够训练数据支撑的(对分类任务来说,在所有相关概率都己知的理想情形下,**从贝叶斯决策论(概率框架)的角度:机器学习要做的就是基于有限的训练样本集尽可能准确地估计出后验概率。,从而既不需进行完全联 合概率计算,又不至于彻底忽略了比较强的属性依赖关系。**主要包括两种策略,对应两种模型:生成式模型和判别式模型。是所有属性上的联合概率,难以从有限的训练样本直接估计而得。都相同,略去,因此,最终求得。

2023-10-22 22:54:13 145

原创 机器学习(6.支持向量机)

表述了我们希望获得具有何种性质的模型(例如希望获得复杂度较的模型), 这为引入领域知识和用户意图提供了途径;另一方面,该信息助于削减假设空间从而降低了最小化训练误差的过拟合风险。从这个角度,其也可称为正则化(regularization)项,上式称为正则化问题,优化目标中的第一项用来描述划分超平面的"间隔"大小,另一项。因此也可采用硬间隔支持向量机相同的求解方式求解。的偏导令其为0,带到拉格朗日对偶函数中求解出。两者唯一的差别就在于对偶变量的约束不同。形如支持向量机损失函数的更一般的形式。

2023-10-22 22:48:23 104

原创 机器学习(6.支持向量机二)

硬间隔支持向量机希望样本在特征空间内线性可分,"核函数"的选择决定特征空间的好坏,从而对支持向量机的性能至关重要。若核函数选择不合适,则意味着将样本映射到了一个不合适的特征空间,很可能导致模型性能不佳。由SVM和SVR的学习模型可以发现,给定训练样本,若不考虑偏移项,总能表示成核函数的线性组合。最常见的,是通过"核化"(即引入核函数)来将线性学习器拓展为非线性学习器。最常见的,是通过"核化"(即引入核函数)来将线性学习器拓展为非线性学习器。只要一个对称函数所对应的核矩阵半正定,它就能作为核函数使用。

2023-10-15 22:35:16 126 1

原创 机器学习(6.支持向量机一)

是仿射函数,仿射函数既是凸的也是凹的(二阶导=0),保凸运算中凸函数的逐点上确界还是凸的,凹函数的逐点下确界还是凹的。常见的充分条件有Slater条件:“若主问题是凸优化问题,且可行集。中存在一点能使得所有不等式约束的不等号成立,则强对偶性成立”此优化问题为含不等式约束的优化问题,且为凸优化问题。从几何角度,对于线性可分数据集,支持向量机就是。拉格朗日对偶可以求解约束优化问题,无论优化问题是否是凸优化问题,其。由上面可推断,一个好的超平面,的,泛化性能更好,不偏不倚。无论主问题是否为凸优化问题,

2023-10-15 22:31:03 94 1

原创 机器学习(5.神经网络)

N维线性空间的超平面的维度为N-1,且一定经过原点。可以把线性空间分成不相交的两部分。比如:n维空间的。

2023-10-06 15:37:35 234 1

原创 机器学习(4.决策树)

决策树是机器学习中常用的一种监督学习算法,用于分类和回归任务。决策树是一种。

2023-10-06 15:24:23 168 1

原创 机器学习(3.线性模型四)

可通过这个投影来减小样本点的维数,且投影过程中使用了类别信息,因此LDA也常被视为一种经典的。在对新样本进行分类时,将其投影到该直线上,再根据投点的位置来确定样本的类别。综合上述两点,由于协方差是一个矩阵,于是用将这两个值相除来得到损失函数。新样本必须分到一个类中,那么如果都不属于其他类就只剩下最后一个类。新样本必须分到一个类中,那么如果都不属于其他类就只剩下最后一个类。视为一个投影矩阵,则多分类LDA将样本投影到。表示标记为类别0的原始数据的协方差,为标记为类别0的原始数据的均值向量。

2023-10-06 15:08:23 98 1

原创 机器学习(3.线性模型三)

的高阶可导连续凸函数,根据凸优化理论,经典的数值优化算法如梯度下降法(gradient descent method)、牛顿法(Newton method)等都可求得其最优解。连续凸函数,根据凸优化理论,经典的数值优化算法如梯度下降法(gradient descent method)、牛顿法(Newton method)等都可求得其最优解。其形式上仍是线性回归,但实质上已是在求取输入空间到输出空间的非线性函数映射。,即,利用线性回归模型的预测结果去逼近真实标记的对数几率。sigmoid函数是形似S的函数。

2023-10-06 15:03:22 190 2

原创 机器学习(3.线性模型二)

多元线性回归考虑了样本有超过1维属性的特征,即某个样本。同样利用求导的方法求解最值。

2023-10-02 00:41:52 95 1

原创 机器学习(3.线性模型一)

A:找拟合最好的直线(即所有点到该直线距离最短对应得那条直线)----------均方误差$E_{(w,b)}=\frac{1}{m} \sum_{i=1}^{m}{(y_i - f(x_i))^2}显然,关键在于如何衡量f(x)与y之间的差别(即假设与真值之间的差别)半正定矩阵的判定定理之一:若实对称矩阵的所有顺序主子式均为非负,则该矩阵为半 正定矩阵。其本质上是一个多元函数求最值(点)的问题,更具体点是凸函数求最值的问题。由凸函数证明定理可知,只需求多元函数的海塞矩阵为半正定矩阵即证明为凸函数。

2023-10-02 00:35:54 99 1

原创 机器学习(2.模型评估与选择)

选择泛化误差最小的模型,因此需要通过实验测试来对学习器的泛化误差进行评估.步骤:将数据集分成两部分:训练集和测试集。通常,大部分数据用于训练,一小部分用于测试。例如,常见的比例是70%训练,30%测试。然后,在训练集上训练模型,在测试集上评估性能。优点:简单、易于理解和实施,适用于大数据集。缺点:结果可能对初始随机划分敏感,有可能不充分利用数据。机器学习的性能度量是用来衡量模型在训练和测试数据上的表现和泛化能力的方法,即为衡量模型泛化能力的评价标准分类任务性能度量:准确度(Accuracy):正确分类的样本

2023-10-02 00:25:51 130 1

原创 机器学习(1.绪论)

机器学习(Machine Learning,简称ML)是一种人工智能(Artificial Intelligence,简称AI)领域的子领域,它涉及开发算法和模型,使计算机系统能够从数据中学习并改进其性能,而无需明确编程。T. Mitchell 提出的经典定义“一个计算机程序被认为能够从经验 E 中学习,解决任务 T,达到性能度量 P,当且仅当,有了经验 E 后,经过 P 来衡量的性能,该程序在任务 T 上有所提升。“利用经验改善系统自身的性能”

2023-10-02 00:18:08 150 1

原创 机器学习入门

机器学习是从数据中自动分析获得模型,并利用模型对未知数据进行预测。1.解释人我们人从大量的日常经验中归纳规律,当面临新的问题的时候,就可以利用以往总结的规律去分析现实状况,采取最佳策略。机器学习机器学习是机器从数据中自动分析获得模型,并利用模型对未知数据进行预测。2.例子分类问题(目标值是类别,是离散型数据)从数据(大量的猫和狗的图片)中自动分析获得模型(辨别猫和狗的规律),从而使机器拥有识别猫和狗的能力(类别回归问题(目标值是连续型数据)

2023-09-17 21:21:37 119 1

原创 数据分析(三)

func: 自定义函数axis=0: 默认按列运算,axis=1 按行运算连续属性的离散化就是将连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数 值代表落在每个子区间的属性值。

2023-09-17 21:01:26 223 1

原创 数据分析(二)

名词解释py—pythonNumPy(Numerical Python)是一种Python数值计算库,它提供了多维数组对象(称为ndarray)以及一组用于处理这些数组的函数和工具。Numpy支持常见的数组和矩阵操作。对于同样的数值计算任务,使用Numpy比直接使用Python要简洁的多。NumPy的主要目标是提供高性能的数值计算工具,适用于大规模的数值数据处理、科学计算、数据分析和机器学习等应用。NumPy的核心特点包括多维数组、广播、高性能数学和线性代数操作、与其他数据科学库的集成等。

2023-09-10 23:22:23 98 1

原创 数据分析(一)

目录数据分析一.Matplotlib1.Matplotlib介绍2.Matplotlib的三层结构3.Matplotlib绘图基础3.1绘图示例3.2绘图流程3.3图形参数解析3.4绘图线3.5绘图标记4.函数解析4.1容器层4.1.1画布层4.2绘图区4.2图像层4.3辅助显示层4.4图片的显示与保存5.折线图(plot)5.1基础折线图5.2多坐标系5.3数学函数6.散点图(scatter)7.柱状图(bar)7.1柱状图(一)7.2柱状图(二)8.直方图(histom)9.饼图(pie)数据分析一

2023-09-10 23:17:31 230 1

原创 python面向对象进阶(异常,os,多线程)

指令指针和堆栈指针寄存器是线程上下文中两个最重要的寄存器,线程总是在进程得到上下文中运行的,这些地址都用于标志拥有线程的进程地址空间中的内存。指令指针和堆栈指针寄存器是线程上下文中两个最重要的寄存器,线程总是在进程得到上下文中运行的,这些地址都用于标志拥有线程的进程地址空间中的内存。每个线程都有他自己的一组CPU寄存器,称为线程的上下文,该上下文反映了线程上次运行该线程的CPU寄存器的状态。每个线程都有他自己的一组CPU寄存器,称为线程的上下文,该上下文反映了线程上次运行该线程的CPU寄存器的状态。

2023-09-03 19:57:47 122

原创 python面向对象进阶(模块与File)

在Python中,文件(File)是一种用于进行文件输入和输出(I/O)操作的基本工具,它允许您读取和写入文件的内容。Python提供了内置的文件处理功能,使您能够打开、创建、读取、写入和关闭文件。通过了解文件的打开、读取、写入和关闭等操作,您可以有效地处理文件操作,并在需要时捕获和处理异常。Python模块是一种将相关的函数、类和变量组织在一起的方式,以便在不同的Python程序中重复使用代码。模块可以包含函数、类、全局变量和可执行的Python代码,可以帮助提高代码的可维护性、可重用性和可扩展性。

2023-09-03 19:41:36 177

原创 python面向对象基础(二)

子类可以根据自己的需求,重新定义继承的方法,从而使方法在不同的子类中具有不同的实现。

2023-08-27 22:03:27 95 1

原创 python面向对象基础(一)

class_variable = "This is a class variable" # 类属性def __init__(self, instance_var):# 构造方法self.instance_var = instance_var # 实例属性def static_method():# 静态方法def class_method(cls):# 类方法# 创建对象# 访问实例属性和调用实例方法。

2023-08-27 22:02:24 85

原创 python(面向过程二)

a.格式def 函数名(参数列表) : 函数体函数代码块以def关键词开头,后接函数标识符名称和圆括号 **()**内的形参列表函数内容以冒号起始,并且缩进。return [表达式]结束函数,选择性地返回一个值给调用方,不带表达式的 return 相当于返回 None.b.示例if a > b:return aelse:return ba = 4b = 55。

2023-08-20 16:43:46 177

原创 python(面向过程一)

可以使用单引号(' ')、双引号(" ")或三引号(''' '''或""" """)来创建字符串。Python 中单引号和双引号使用完全相同。使用三引号(‘’’或“”")可以指定一个多行字符串。三引号和多行注释写法一样使用变量接受它,它就是字符串不使用变量接受它,就可以作为多行注释使用示例列表(List)是一种在Python编程语言中用于存储一组有序、可变、可重复的元素的数据结构。列表中元素的类型可以不相同,它支持数字,字符串甚至可以包含列表(所谓嵌套)。

2023-08-20 16:30:49 904 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除