机器学习(6.支持向量机)

4.软间隔支持向量机

4.1软间隔soft margin

硬间隔hard margin:所有样本均满足约束,即所有样本都必须划分正确。

软间隔soft margin:允许部分样本不满足约束。

在这里插入图片描述

在这里插入图片描述

据此可设计优化目标为:

在这里插入图片描述

在这里插入图片描述

其他常见的替代损失(surrogate loss)函数包括:

在这里插入图片描述

进一步,引入"松弛变量"(slack variables) ξ i ≥ 0 \xi_i≥0 ξi0,表示每个样本不满足约束 y i ( w T x i + b ) ≥ 1 y_i(\mathbf w^T\mathbf x_i+b)≥1 yi(wTxi+b)1的程度。

在这里插入图片描述

同样可证明该问题为凸优化问题,

因此也可采用硬间隔支持向量机相同的求解方式求解。

在这里插入图片描述

与硬间隔支持向量机的拉格朗日对偶问题进行对比:
在这里插入图片描述

两者唯一的差别就在于对偶变量的约束不同。

采用与硬间隔支持向量机相同的方法进行求解,满足一下KKT条件:

在这里插入图片描述

求解主问题转化为先对拉格朗日函数求 x \mathbf x x的偏导令其为0,带到拉格朗日对偶函数中求解出 μ , α \mathbf μ,\mathbf α μ,α,再带回求解 w , b \mathbf w,b w,b得到超平面的解。

形如支持向量机损失函数的更一般的形式

优化目标中的第一项用来描述划分超平面的"间隔"大小,另一项 ∑ i = 1 m ℓ ( f ( x i ) , y i ) \sum_{i=1}^m\ell (f(\mathbf x_i),y_i) i=1m(f(xi),yi)用来表述训练集上的误差,可写为: min ⁡ f   Ω ( f ) + C ∑ i = 1 m ℓ ( f ( x i ) , y i ) \min_f\space \Omega(f)+C\sum_{i=1}^m\ell (f(\mathbf x_i),y_i) minf Ω(f)+Ci=1m(f(xi),yi)

  1. 结构风险(structural risk) Ω ( f ) \Omega(f) Ω(f)

    用于描述模型的某些性质。从经验风险最小化的角度来看 Ω ( f ) \Omega(f) Ω(f)表述了我们希望获得具有何种性质的模型(例如希望获得复杂度较的模型), 这为引入领域知识和用户意图提供了途径;另一方面,该信息助于削减假设空间从而降低了最小化训练误差的过拟合风险。从这个角度,其也可称为正则化(regularization)项,上式称为正则化问题, C C C称为正则化常数。

  2. 经验风险(empirical risk) ∑ i = 1 m ℓ ( f ( x i ) , y i ) \sum_{i=1}^m\ell (f(\mathbf x_i),y_i) i=1m(f(xi),yi)

    用于描述模型与训练数据的契合程度。

  3. 惩罚系数 C C C

    用于对二者进行折中。

4.2支持向量回归SVR

事实上,支持向量回归和支持向量机不是一回事,只是为了贴近SVM损失函数的形式设计了损失函数。

在这里插入图片描述

在这里插入图片描述

与支持向量机类似,可利用拉格朗日对偶求解:

引入拉格朗日乘子(𝛂𝛂𝛍𝛍�,�,�,�),得到拉格朗日函数:

在这里插入图片描述

对除了拉格朗日乘子以外的参数(�,�,��,�^)求一阶偏导,并令一阶偏导为0:

在这里插入图片描述

得到SVR对偶问题:

在这里插入图片描述

上述过程满足的KKT条件有:

在这里插入图片描述

最后求得SVR的解为:

png)

上述过程满足的KKT条件有:

在这里插入图片描述

最后求得SVR的解为:

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值