CINTA作业七

  1. 证明命题11.4
    设p是奇素数,a,b ∈ \in Z且不被p整除。则有:
    (1) 如果a ≡ \equiv b (mod p),则( a p \dfrac{a}{p} pa)=( b p \dfrac{b}{p} pb);
    这是显然的。存在x ∈ \in Z,使得a ≡ \equiv b ≡ \equiv x 2 x^2 x2(mod p)时,( a p \dfrac{a}{p} pa)=( b p \dfrac{b}{p} pb)=1;
    若不存在x ∈ \in Z,使得a ≡ \equiv b ≡ \equiv x 2 x^2 x2(mod p)时,( a p \dfrac{a}{p} pa)=( b p \dfrac{b}{p} pb)=0;
    (2)( a p \dfrac{a}{p} pa)( b p \dfrac{b}{p} pb)=( a b p \dfrac{ab}{p} pab);
    a,b,p是奇素数且两两互素,由欧拉准则得,( a b p \dfrac{ab}{p} pab)= ( a b ) ( p − 1 ) / 2 (ab)^{(p-1)/2} (ab)(p1)/2 (mod p),
    a p \dfrac{a}{p} pa)= ( a ) ( p − 1 ) / 2 (a)^{(p-1)/2} (a)(p1)/2 (mod p),( b p \dfrac{b}{p} pb)= ( b ) ( p − 1 ) / 2 (b)^{(p-1)/2} (b)(p1)/2 (mod p)
    又因为 ( a b ) ( p − 1 ) / 2 (ab)^{(p-1)/2} (ab)(p1)/2= a ( p − 1 ) / 2 a^{(p-1)/2} a(p1)/2 b ( p − 1 ) / 2 b^{(p-1)/2} b(p1)/2
    所以( a b p \dfrac{ab}{p} pab)=( a p \dfrac{a}{p} pa)( b p \dfrac{b}{p} pb
    (3).( a 2 p \dfrac{a^2}{p} pa2)=1;
    由欧拉准则得,( a 2 p \dfrac{a^2}{p} pa2) ≡ \equiv a 2 ( ( p − 1 ) / 2 ) a^{2((p-1)/2)} a2((p1)/2) ≡ \equiv a p − 1 a^{p-1} ap1(mod p),
    由费尔马小定理得, a p − 1 a^{p-1} ap1 ≡ \equiv 1(mod p),所以有( a 2 p \dfrac{a^2}{p} pa2)=1;

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − ----------------------------------------

5.证明推论11.1
设p是一个奇素数,则:
( − 1 p ) = { 1 ,如果 p ≡ 1 ( m o d 4 ) − 1 ,如果 p ≡ − 1 ( m o d 4 ) (\dfrac{-1}{p})=\left\{\begin{matrix}1,如果p\equiv1 (mod 4)\\-1,如果p\equiv-1 (mod 4) \end{matrix}\right. p1={1,如果p1(mod4)1,如果p1(mod4)
证明如下:
(1)当p ≡ \equiv 1(mod 4),则存在k ∈ \in Z,使得p=4k+1。则根据欧拉准则得,( − 1 p \dfrac{-1}{p} p1 ≡ \equiv ( − 1 ) ( p − 1 ) / 2 (-1)^{(p-1)/2} (1)(p1)/2 ≡ \equiv ( − 1 ) ( 4 k + 1 − 1 ) / 2 (-1)^{(4k+1-1)/2} (1)(4k+11)/2 ≡ \equiv 1 ( mod p)。
(2)当p ≡ \equiv -1 (mod 4),则存在k ∈ \in Z,使得p=4k+3。则根据欧拉准则得,( − 1 p \dfrac{-1}{p} p1 ≡ \equiv ( − 1 ) ( p − 1 ) / 2 (-1)^{(p-1)/2} (1)(p1)/2 ≡ \equiv ( − 1 ) ( 4 k + 3 − 1 ) / 2 (-1)^{(4k+3-1)/2} (1)(4k+31)/2 ≡ \equiv ( − 1 ) ( 2 k + 1 ) (-1)^{(2k+1)} (1)(2k+1) ≡ \equiv -1 (mod p)

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − ----------------------------------------
6.设p是奇素数,请证明 Z p ∗ Z_p^{*} Zp的所有生成元都是模p的二次非剩余。
证明如下:
∀ \forall a ∈ \in Z p ∗ Z_p^{*} Zp,且a是 Z p ∗ Z_p^{*} Zp的生成元,则有 a p − 1 a^{p-1} ap1 ≡ \equiv 1 (mod p),且 |a|=p-1(a模p的阶为p-1),即最小整数p-1使得 a p − 1 a^{p-1} ap1 ≡ \equiv 1 (mod p),
又因为gcd(a,p)=1,p是奇素数,所以由欧拉准则得,( a p \dfrac{a}{p} pa ≡ \equiv a ( p − 1 ) / 2 a^{(p-1)/2} a(p1)/2 (mod p), a ( p − 1 ) / 2 a^{(p-1)/2} a(p1)/2 ≠ \neq = 1 。
即( a p \dfrac{a}{p} pa ≠ \neq = 1,所以( a p \dfrac{a}{p} pa)=-1。
所以, Z p ∗ Z_p^{*} Zp的所有生成元都是模p的二次非剩余。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值