自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 Variational Graph Auto-Encoders(VAGE)论文内相关公式以及相关概念解读

VGAE 简介VGAE是一种用于处理图结构数据的模型。图结构数据是一种特殊的数据类型,由节点(nodes)和边(edges)组成,常见于社交网络、引文网络等领域。该模型是基于变分自编码器(VAE)的,VAE 是一种常用于生成模型的神经网络架构。VAE 的目的是学习数据的潜在表示(latent representations),这有助于对输入数据进行压缩、生成新样本等。

2024-10-14 18:11:20 841

原创 Variational Graph Auto-Encoders VGAE代码模块详细解读(2)

我们可以在官网上下载的VGAE_dgl-main代码包里面看到有这四个主要的代码,运行train.py文件可以得出我们实验结果,其他模块相互调用共同完成训练的实现。上面即为代码的相关注释,多多关注里面的损失函数,优化函数,评估以及卷积层等模块,先看论文再看代码哦!

2024-10-14 17:45:58 177

原创 Variational Graph Auto-Encoders VGAE代码模块详细解读(1)

以上是train.py该模块的解读,其他模块接下来将会慢慢继续发出,好像字很丑不好意思啦!

2024-10-13 15:22:06 349

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除