紧接着上一篇发布哦,上一篇的解读如下:
VGAE代码模块详细解读(1)-CSDN博客
接下来进行预处理preprocess.py模块代码的解读,还是继续粘贴自己做的笔记图片叭:
接下来进行model.py模块代码的解读:
接下来进行input_data.py模块代码的解读:
我们可以看到Citeseer
数据集得到了额外的处理,而其他数据集则没有类似的处理。其背后的原因是不同的数据集存在特殊问题和结构差异,特别是 Citeseer 数据集的一些特性要求对其进行修复或额外处理。以下是详细解释:
1. Citeseer 数据集中的孤立节点问题:
-
孤立节点(Isolated Nodes):在 Citeseer 数据集中,某些节点没有任何边(即孤立节点),这意味着它们不会在图中与其他节点产生连接。
-
影响:由于这些节点没有连接,它们在图中没有邻居,这导致它们在原始特征矩阵中并没有相应的特征向量。
-
修复方法:为了处理这些孤立节点,代码通过创建一个扩展的特征矩阵
tx_extended
,确保每个孤立节点都有一个特征向量(即使这个向量是全零向量)。
在代码中,相关的处理逻辑如下:
if dataset == 'citeseer': # 找到测试集中孤立的节点,并在正确的位置添加它们的零向量 test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder) + 1) tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1])) tx_extended[test_idx_range - min(test_idx_range), :] = tx tx = tx_extended
这段代码针对 Citeseer 数据集的特性进行处理:
-
扩展测试特征矩阵
tx
:tx_extended
通过创建一个比原始tx
更大的稀疏矩阵,为所有节点(包括孤立节点)提供特征空间,并用原始的tx
数据填充那些实际有连接的节点的特征。 -
将孤立节点用零向量表示:孤立节点用全零的特征向量填充。
2. 为什么其他数据集没有类似的处理:
-
没有孤立节点问题:其他数据集(例如
Cora
或Pubmed
)不存在 Citeseer 数据集中的孤立节点问题。它们的数据结构较为完整,图中的每个节点都有至少一个连接,并且相应的特征矩阵已经能准确表示每个节点的特征。因此不需要对这些数据集进行类似的处理。 -
特定的数据集差异:不同的图数据集可能在数据格式、节点特征、边结构等方面有所不同,但 Citeseer 的问题(孤立节点)是一个较为特殊的情况,因而需要专门的修复。
3. 其他数据集的处理方式:
-
对于其他数据集,如
Cora
和Pubmed
,没有额外的代码是因为它们的特征矩阵和图结构已经满足训练需求,不需要像 Citeseer 这样处理孤立节点。 -
它们的特征矩阵通过
sp.vstack((allx, tx))
直接拼接,测试集的特征按test_idx_reorder
排序,并且无需对孤立节点进行额外的操作。
我们可以在官网上下载的VGAE_dgl-main代码包里面看到有这四个主要的代码,运行train.py文件可以得出我们实验结果,其他模块相互调用共同完成训练的实现。上面即为代码的相关注释,多多关注里面的损失函数,优化函数,评估以及卷积层等模块,先看论文再看代码哦!