自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

所念皆星河

Python小白技术员

  • 博客(204)
  • 收藏
  • 关注

原创 统计学专业外语期末考核

本文介绍了统计学专业外语考核内容,包括术语翻译(如置信区间、P值等中英互译)、定义匹配(如中心极限定理、随机变量等概念解释),以及文献翻译(线性回归和假设检验的英汉互译)。此外,还包含一篇关于机器学习与传统统计模型比较的阅读理解材料,指出随机森林等树集成方法在复杂数据预测中优于逻辑回归。全文涵盖统计学术语、概念和实际应用,测试学生对专业外语的理解和运用能力。

2025-10-14 10:55:14 605

原创 基于keyindicators数据集实现的图形绘制-散点图/气泡图/雷达图

本文展示了使用R语言进行大数据可视化的多种方法。首先通过基本散点图和ggplot2包分析了国民人均收入与预期寿命的关系,并演示了添加趋势线、边际地毯和标签的美化技巧。随后介绍了三维散点图和气泡图的绘制方法,用于展示三维变量关系。最后通过自定义标准化函数处理数据,并绘制雷达图进行多维度比较。这些可视化技术涵盖了从二维到多维的数据展示方式,为大数据分析提供了直观的图形工具。

2025-10-11 09:11:40 150

原创 数据预处理与偏度分析实战

本文对贷款数据集进行了数据预处理和探索性分析。首先计算了年收入变量的偏度(28.9),显示严重右偏。随后对多个数值型变量进行偏度分析,发现年收入和总支付额偏度较高。为改善可视化效果,去除年收入超过40万美元的极端值,绘制原始数据和对数转换后的直方图对比。分析过程使用了dplyr、e1071、ggplot2等R包,通过Box-Cox变换探索数据转换方法,最终展示原始数据与对数转换后的分布差异。结果表明对数变换能有效改善高度偏态数据的分布特征。

2025-09-23 13:59:09 49

原创 解决 LaTeX 编译内容不显示的问题

摘要:LaTeX编译中文不显示通常与编码设置或宏包配置有关。解决方法包括:1)使用ctex宏包并搭配XeLaTeX/PDFLaTeX;2)设置UTF-8编码;3)直接使用ctexart等中文文档类;4)确保使用支持中文的编译器。这些方法能有效解决LaTeX中的中文显示问题。(150字)

2025-09-13 11:15:17 484

原创 抽样技术——基于LoanStats数据集实现2

本文针对Lending Club平台2007-2015年的贷款数据(包含23万+观测值)进行抽样研究。首先通过数据预处理步骤,包括读取LoanStats数据集、筛选有效信用评级(A-G级)的观测值。由于原始数据量庞大导致处理成本高,研究提出采用概率抽样方法提取代表性样本,以提高分析效率。文中展示了R语言数据预处理代码,包括数据结构查看和关键变量筛选,为后续抽样分析奠定基础。

2025-09-13 11:12:22 68

原创 大数据探索性分析——抽样技术应用

本文对Lending Club贷款数据集(LoanStats3c)进行了数据预处理,主要针对数值型变量的缺失值进行中位数填补。通过R语言实现自动检测数值列,对存在缺失值的列使用相应中位数进行填补,并记录处理过程。对于全为缺失值的列给出提示信息。处理后再次检查确认所有数值列的缺失值已被填补,最终将清洗后的数据集和数值列索引分别保存为CSV文件。该预处理为后续数据分析提供了完整可用的数据集。

2025-09-10 22:44:08 214

原创 Chatgpt-gpt5的代码处理能力太强啦

本文提供了一个完整的时间序列分析与预测的Python模板,包含数据预处理、模型构建和预测评估全流程。主要功能包括:数据读取与缺失值处理、ADF平稳性检验、STL/季节分解、ETS指数平滑和SARIMA季节ARIMA建模(支持自动参数搜索)、滚动验证及基于分解残差的异常检测。模板支持多种时间频率(日/周/月/小时数据),并提供了两种SARIMA实现方式:优先使用pmdarima自动寻参,失败时回退到简单网格搜索。依赖库包括pandas、statsmodels等,安装pmdarima后可实现自动参数优化。该模板

2025-08-10 22:50:06 333

原创 C++编程基础

www。

2025-07-11 23:22:03 992

原创 BP神经网络-准确率、查准率、查全率、F1分数评价标准

BP神经网络性能评价标准主要包括准确率、查准率、查全率和F1分数等指标。一般认为,准确率达到80%以上(>0.8)为较好表现,查准率和查全率在0.7-0.9区间较为理想,F1分数高于0.75则表明模型综合性能较好。不同任务需关注不同指标:多分类任务侧重准确率和宏平均指标,回归任务关注MSE/MAE和R²,异常检测更重视查全率,排序任务评估NDCG/MAP,聚类则依赖轮廓系数等。评价标准需结合具体业务场景和数据分布综合判断,0.8以上通常视为良好表现,但高风险场景需更严格标准。

2025-07-06 10:45:16 186

原创 神经网络分类问题求解——以鸢尾花为例

摘要:本文实现了一个三层BP神经网络模型,用于处理分类和回归任务。代码包含神经网络初始化、正向传播、误差反向传播等核心算法,支持多特征输入和多目标输出。数据预处理部分实现了特征编码、标准化和数据集划分功能。模型采用tanh作为激活函数,并包含动量因子优化训练过程。测试结果表明该神经网络能够有效处理结构化数据,输出结果符合预期。代码结构清晰,包含完整的训练和测试流程,可作为神经网络基础实现的参考。

2025-06-28 16:50:40 49

原创 应用时间序列分析

摘要:本文通过多张图片展示了不同场景下的视觉内容,涵盖自然风光、城市建筑、日常生活等多个主题。这些图像以高品质呈现,部分为全景构图,体现了摄影的多样性和艺术性。每张图片均采用居中排版,清晰度较高,适合用于视觉展示、设计参考或内容插图。图片格式统一,便于读者浏览和对比不同视角的视觉元素。

2025-06-23 20:35:01 148

原创 应用时间序列分析期末考试重点知识图谱

1。

2025-06-23 20:27:27 66

原创 运筹学期末考试重点

2025-06-22 17:28:37 94 1

原创 解决虚拟环境中文绘图显示问题

在虚拟环境中解决Matplotlib中文显示问题的方案:当在conda、Codespaces或AIStudio等环境中绘图时,无法全局设置中文字体,可采用局部解决方案。方法是将SimHei.ttf文件放入工作目录,通过FontProperties指定字体路径,并在绘图时设置textprops={'fontproperties':myfont}参数。同时需处理图表标题、轴标签和图例的字体设置,并确保负号正常显示。这种方案避免了修改系统字体配置,适用于各种虚拟开发环境。

2025-06-15 20:08:40 317 2

原创 python数据挖掘编程题(@飞桨AI Studio星河社区 @Github Codespace)

摘要:本文包含两个Python编程任务。第一个任务是编写程序读取文本文件,将单词首字母大写后输出到新文件,并统计单词总数。代码展示了文件读写和字符串处理操作。第二个任务使用pandas处理超市营业额数据:2.1找出交易额最小的3天并显示星期几;2.2绘制各柜台营业额占比饼图,包含中文字体设置和数据可视化实现。两个任务分别展示了基础文件处理和数据统计分析的应用。

2025-06-13 11:26:32 173 1

原创 机器学习核心概念速览

机器学习基础概念与应用 摘要:本文介绍了机器学习的核心概念和基本应用。主要内容包括: 机器学习类型:有监督学习(分类/回归)、无监督学习(聚类/降维)和半监督学习 关键术语:特征向量、目标值、偏差与方差、维度、泛化能力等 数据处理:一维/二维数组操作、稀疏矩阵、特征提取方法 常用算法:线性回归、岭回归和Lasso回归的实际应用案例 模型评估:交叉验证、早停法、学习曲线等优化技术 性能指标:准确率、召回率等评估度量 文中通过Python代码示例展示了numpy数组操作和scikit-learn库的使用,包括儿

2025-06-11 21:11:07 846

原创 杰拉德相似度-协同过滤算法

杰拉德相似度(Jaccard Similarity)是一个常用的相似度度量方法,用于比较两个集合之间的相似性。它的公式如下:\[\text{Jaccard Similarity} = \frac{|A \cap B|}{|A \cup B|}\]其中:- \( A \) 和 \( B \) 是两个集合(例如,用户对电影的评分集合)。- \( |A \cap B| \) 是两个集合的交集,表示同时被两个用户评分的电影数量。- \( |A \cup B| \) 是两个集合的并集,表示至少被一个

2025-06-09 09:06:18 228

原创 协同过滤算法进行电影推荐

协同过滤算法进行电影推荐

2025-06-09 08:54:17 77

原创 scikit-learn机器学习

机器学习基础与线性回归应用 本文介绍了机器学习的基本概念和线性回归算法的应用。主要内容包括: 机器学习基础概念: 样本、特征向量、目标变量等基本术语 偏差与方差、维度、正则化等关键理论 有监督/无监督学习区别及常见算法 线性回归实践应用: 使用简单线性回归预测儿童身高 岭回归(Ridge)在乳腺癌数据集的分类应用 代码示例展示了数据准备、模型训练和预测过程 核心库介绍: NumPy数组操作 scikit-learn的机器学习功能 文章通过实际案例演示了机器学习模型的构建流程,从数据准备到模型评估。

2025-06-06 14:07:18 325 2

原创 Python数据类型与运算符全解析-Python数据挖掘可视化分析

本文摘要: 第二章主要练习了Python基础数据类型运算,包括整数除法(-68//7=-10)、集合操作(并集|、交集&、差集-)、字符编码转换(chr(ord('0')+3))等内容。 第三章重点练习了Python的四种数据结构: 列表:创建方式(空列表、推导式等)、常用方法(append/extend/insert/remove/pop) 元组:创建方式、不可变性特点、切片操作 字典:多种创建方式、嵌套结构 集合:基本操作(交并差集) 编程题部分包含了对列表的各种操作:计算平均值、排序、位数统计

2025-06-05 23:19:05 510 2

原创 SARIMA时间序列分析:三大模型对比

本文探讨了时间序列分析的分解方法与建模技术。首先介绍了乘法模型(X_t=T_t×S_t×I_t),分别展示了趋势效应(T_t)和季节效应(S_t)的图示。随后比较了指数平滑法(X_t=(893.128+1.583t)S_j)和两种SARIMA模型的拟合效果。第一种SARIMA模型(0,1,1)×(0,1,1)12采用差分和移动平均组合,第二种(1,1,0)×(0,1,1)12结合自回归和季节性差分。通过RMSE指标对比显示,指数平滑法(7.665)精度略低于两种SARIMA模型(7.208和7.217)。研

2025-06-04 18:05:15 198 2

原创 工资统计实战:5步搞定数据分析(python数据挖掘)

摘要: 本文包含四个编程练习题,涵盖Python基础知识和数据处理。第一题计算员工工资的平均值、高于平均值的数量及排序;第二题处理学生成绩,统计高分人数、找出最低分学生并连接姓名字符串;第三题管理图书信息,按类别分组、统计数量并处理作者和编号数据;第四题统计兴趣小组报名情况,分析受欢迎的小组并整理学生名单。所有题目均要求使用Python内置函数和数据结构操作,涉及列表、字典、集合等数据类型的处理。

2025-05-30 10:30:28 310 1

原创 Python数据结构全解析:列表、元组、字典与集合

本文展示了Python中列表、元组、字典和集合的基本用法示例。列表部分演示了创建空列表、不同类型元素列表、列表推导式、列表操作(append、extend、insert、remove、pop)等。元组部分展示了创建元组的不同方式,包括单元素元组、嵌套元组等。字典部分展示了创建字典、字典推导式、字典合并以及常用字典方法(pop、setdefault等)。集合部分介绍了集合创建、元素操作(add、remove、discard等)以及集合运算(并集、交集、差集等)。通过这些示例可以快速掌握Python主要数据结构

2025-05-30 10:12:16 93

原创 第十章-家用热水器用户行为分析与事件识别

摘要: 本章基于家用热水器用水数据,通过数据探索分析发现水流状态记录数分布与流量分布特征。在数据预处理阶段,通过属性归约删除冗余特征,并基于时间阈值划分用水事件,采用斜率指标法确定最佳单次用水时长阈值为4分钟。接着构造用水时长、频率等特征,分析用水停顿事件与洗浴时间点分布。研究结果为后续用水行为分析及事件识别提供了数据基础,有助于优化热水器使用模式识别与节能策略制定。

2025-05-28 19:51:15 154

原创 第7章-航空公司客户价值分析

本文介绍航空公司客户价值分析的数据处理方法。首先进行描述性统计分析,计算各变量的空值数、最大值和最小值。其次进行分布分析,包括客户基本信息(入会年份、性别比例、会员等级、年龄分布)和乘机信息(最后乘机时长、飞行次数、飞行公里数)的分布特征。最后进行相关性分析,计算会员等级、飞行次数、积分等变量的Pearson相关系数矩阵,并通过热力图直观展示变量间相关性。分析采用Python的pandas、matplotlib和seaborn库实现数据探索和可视化。

2025-05-28 19:41:12 113

原创 Bootstrap法进行随机模拟

本研究对26名神经功能受损儿童的空间知觉测试数据进行了分析。问题一采用Bootstrap方法计算A组与B组得分的皮尔逊相关系数,得到点估计0.821,95%置信区间为[0.662,0.913]。问题二以B组为因变量、A组为自变量建立一元线性回归模型,回归系数a的Bootstrap点估计为0.656,95%置信区间[0.49,0.847],假设检验p值接近0,表明回归系数显著不为零。分析结果表明两组测试得分存在显著相关性和线性关系。

2025-05-28 19:34:53 489

原创 超市营业额数据分析

文章摘要:本文通过Python对超市营业额数据进行分析,主要完成了三项任务。首先,通过汇总交易额,推出了5名销冠员工。其次,分析了新领导上任15天以来的业绩总增长情况,并绘制了超市整体和每位员工的增长率图表,展示了业绩波动。最后,将所有柜台的销售额分为三个等级,进一步细化了销售数据的分类。通过这些分析,为超市的销售策略和员工绩效评估提供了数据支持。

2025-05-16 16:36:05 281

原创 Deepseek流式操作与用户行为数据分析day01

Deepseek流式操作与用户行为数据分析day01

2025-05-06 16:38:24 448

原创 Julia Notebook

普罗透斯将在你的浏览器中打开,现在就可以开始了!启动Julia,输入。

2025-04-24 17:38:33 395

原创 ppt网站

PPTSTORE是一个专业的PPT素材下载网站,这里有大量的PPT模板、PPT图表、PPT作品、PPT动画等资源可以下载。OfficePLUS是微软的Office官方在线模板网站,这是微软官方出品,模板质量都试试比较优质的,而且种类齐全,不管你有什么需求,相信都可以在这里找到适用的PPT模版!”,首页非常干净整洁,没有广告,PPT模板详情页有一些普通的卡片的广告,不过并不影响PPT的下载,毕竟站长也需要维护的嘛。常规的PPT模板、PPT配图、PPT背景等等的分类都是有的,而且PPT模板的日期还是比较新的。

2025-04-02 23:39:28 5930

原创 python读取文件xlrd or openpyxl

【代码】python读取文件xlrd or openpyxl。

2025-03-31 16:08:56 152

原创 GTAP地址

GTAP

2025-03-25 10:20:52 108

原创 列表表达式

列表表达式(List Comprehensions)在 Python 中是一种简洁且强大的工具,可以用于创建和操作列表。这些示例展示了列表表达式在处理各种复杂操作时的强大功能。你可以根据需要,将这些示例进行调整和扩展,以满足特定需求。

2025-03-07 11:00:56 96

原创 文档散+词云图

【代码】文档散+词云图。

2025-03-02 12:25:17 111

原创 SEM结构方程模型

若数据不满足条件,可考虑数据转换、使用替代估计方法,或改用更灵活的统计模型(如混合模型)。

2025-02-27 17:22:04 1080 1

原创 Python数据分析、挖掘与可视化(慕课版)学习资源包

PPT讲义:详尽的幻灯片内容覆盖了从基础到高级的数据分析概念,帮助你系统地理解和掌握知识。源代码:实践是学习的最佳方式。我们提供了课程中演示的所有案例的源代码,让你能够跟随动手操作,加深理解。数据集:真实世界的数据集用于练习,涵盖各种应用场景,使你能将理论应用于实践,提升解决问题的能力。加入数据分析的学习之旅,开启你的数据洞察之门。这份资源包将伴随你每一步,助你在数据科学的世界里不断前行。祝学习愉快!

2025-02-23 17:43:28 383 2

原创 Python数据分析、挖掘与可视化慕课版第2版学习资料包

1. **解压资源**:首先,你需要下载提供的`Python数据分析、挖掘与可视化(慕课版).rar`压缩文件,并将其解压到本地目录。5. **探索与创新**:在掌握了基本技能后,鼓励大家探索新的数据分析方法,对数据集进行更深入的分析或尝试自己的项目。- **源代码**:实践是学习的最佳方式。- **数据集**:真实世界的数据集用于练习,涵盖各种应用场景,使你能将理论应用于实践,提升解决问题的能力。4. **实战数据集**:用提供的数据集来实践所学的知识,不要害怕犯错,实践是最好的老师。

2025-02-23 17:37:24 147

原创 PyTorch数据建模

【代码】PyTorch数据建模。

2025-02-02 15:51:56 466

原创 基于RFM聚类与随机森林算法的智能手机用户监测数据案例分析

基于RFM聚类与随机森林算法的智能手机用户监测数据案例分析摘要近年来,随着数字化和信息化的快速发展,越来越多的人开始使用智能手机。文章基于某公司某年连续30天4万多位智能手机用户的监测数据,通过随机森林与RFM聚类分析模型对智能手机用户的监测数据进行挖掘和分析,有效地统计和归纳了用户对于A类APP的使用情况,模型准确度达到了80%,同时对于智能手机APP的开发和使用提出了相应的建议。

2025-01-15 16:38:52 609

原创 矩阵方程组求解——Markov过程

D:\python\python.exe "D:\python\方程组求解.py"进程已结束,退出代码为 0。

2024-12-21 14:37:52 495

instacart-market-basket-analysis.zip

1. 数据说明 数据共有300 0000orders, 20 0000users, 5000products, 每个user提供有4-100个orders 2. 各数据内容了解 aisles:产品摆放位置说明 order_products__prior:订单产品关联表 orders.csv: 用户下单记录表。 products.csv: 产品ID分类,及其摆放位置的关系表 departments.csv: 产品分类表 3. 目标分析 目标是预测用户下次购买时,可能再次购买的产品。 即,用户历史购买的产品,那些是用户下次购买还会购买的。 4. 训练数据构建 order_id, product_id(订单中的一个产品), lable(是否下次购买)。 (1)产品特征 1)产品被购买次数。 2)产品被重复购买次数 3)产品被重复购买次数/总的购买次数。 4)产品在不同week被购买次数 5)产品在不同hour被购买次数。

2024-10-24

比例数据可视化-Python实现板块层级图绘制

比例数据可视化-Python实现板块层级图绘制

2024-10-22

时间数据可视化基础实验

时间数据可视化基础实验

2024-10-21

(Auto)汽车数据集

英文名 中文名 类型 备注 1 mpg 油耗, miles per gallon continuous 2 cylinders 气缸数量 multi-valued discrete 3 displacement 排气量/排量 continuous 4 horsepower 马力 continuous 存在6个缺失值 5 weight 重量 continuous 6 acceleration 加速度 continuous 7 model_year 出厂时间 multi-valued discrete 8 origin 产地 multi-valued discrete 包含三个类别europe、japan、usa 9 name 车品牌,比如bmw 320i string (unique for each instance)

2024-10-21

torch配置文件.rar

torch配置文件.rar

2024-10-07

Eviews 11.0 64bit .zip

Eviews 11.0 64bit .zip

2024-10-07

ROC曲线深度解析,“Breast-Cancer.xlsx” 数据集

“Breast_Cancer.xlsx” 数据集的来源是UCI机器学习库中的经典数据集之一——乳腺癌威斯康星数据集(Breast Cancer Wisconsin Dataset)。该数据集常用于二分类任务,帮助构建用于乳腺癌诊断的机器学习模型,这里将利用该数据集构建机器学习模型并绘制二分类模型下的ROC曲线

2024-10-05

chinaMap中国地图基于HTML5,JavaScript,css实现

D3.js is a JavaScript library for manipulating documents based on data. It uses HTML, SVG, and CSS to display data. The full name of D3 is "Data-Driven Documents," which means it allows you to use data to drive updates to the Document Object Model (DOM). D3.js provides powerful data visualization capabilities, including but not limited to bar charts, line charts, pie charts, scatter plots, and force-directed graphs.

2024-10-03

D3.js可视化工具使用-Notepad++应用程序

D3.js可视化工具使用-Notepad++应用程序

2024-10-02

links数据集Python可视化技术应用

links数据集Python可视化技术应用

2024-10-01

统计预测与决策置信区间操作第三章课后练习7

统计预测与决策置信区间操作第三章课后练习7

2024-09-29

tableau可视化入门-超市数据集-实验2.twbx

tableau可视化入门—超市数据集,配套分析在博客Tableau数据可视化入门下。

2024-09-28

第三章-回归预测法:一元线性回归和多元线性回归分析-带例题

第三章-回归预测法第7题和11题

2024-09-28

第四章-课后练习5:修正指数曲线模型-excel和python应用(2)

第四章-课后练习5

2024-09-28

第四章 -课后练习7:一元线性回归 EXCEl实验与Python结合实现

统计决策与预测第四章课后练习7

2024-09-28

经典单方程计量经济学模型:一元线性回归模型-Eviews实现

计量经济学eviews数据

2024-09-27

Python实现:时间序列趋势外推法应用-龚珀兹曲线拟合原始数据

统计预测与决策第四章课后实验综合题数据

2024-09-26

PBIDesktopSetup-x64.exe

Power BI是一款由微软开发的商业智能(BI)软件服务、应用和连接器集合,它们协同工作以将相关数据来源转换为连贯的视觉逼真的交互式见解。以下是对Power BI的详细介绍: ### 一、主要功能 1. **数据连接与准备**: - Power BI支持连接数百个数据源,包括Excel电子表格、基于云和本地混合数据仓库的集合等。 - 用户可以轻松地连接到数据源,并使用Power Query进行数据准备,包括合并、转换和整理大量数据。 2. **数据建模与分析**: - Power BI提供了丰富的建模功能,如快速度量值、分组、预测和聚类等,帮助用户挖掘数据中的潜在模式。 - 高级用户可以使用DAX公式语言完全控制其模型,进行深入的数据分析。 3. **数据可视化**: - Power BI拥有超过85个新式数据视觉对象,用户可以使用拖放画布创建交互式数据可视化效果。 - 支持自定义视觉对象,用户可以根据需要创建自己的视觉对象,以更好地讲述数据故事。

2024-09-22

Tableau安装包,资源获取不易,有偿获取。

Tableau是一款强大的数据分析和可视化工具,它能够帮助用户将复杂数据转化为直观图表和仪表盘,从而更好地理解和分析数据。以下是关于Tableau的详细介绍: 一、产品概述 Tableau成立于2003年,是斯坦福大学一个计算机科学项目的成果,该项目旨在改善分析流程并让人们能够通过可视化更轻松地使用数据。Tableau是一个可视化分析平台,它改变了我们使用数据解决问题的方式,使个人和组织能够充分利用自己的数据。Tableau以科学研究工作为基础,旨在使分析更快、更轻松、更直观。 二、主要功能 快速分析:Tableau提供了强大的数据分析和可视化功能,用户可以通过简单的拖放操作,快速创建图表、坐标图、仪表盘和报告。 数据兼容性:Tableau支持从各种数据源(如电子表格、数据库、Hadoop和云服务)中获取数据,并轻松探索这些数据。 实时更新:Tableau支持实时连接获取最新数据,或者根据制定的日程表获取自动更新。 智能仪表板:用户可以创建智能仪表板,集合多个数据视图进行更丰富的深入分析。 瞬时共享:Tableau允许用户将创建的可视化内容快速发布到网络和移动设备上,实现实时共享。

2024-09-22

PanoplyWin-5.5.1.zip

气象文件打开程序,PanoplyWin是Panoply软件针对Windows操作系统的版本。Panoply是一款由美国国家航空航天局(NASA)下属的戈达德航天研究所(GISS)基于Java开发的强大数据可视化工具,特别适用于地球科学和环境研究领域的数据分析。以下是对PanoplyWin的详细介绍: 一、软件特点 多格式支持:Panoply能够读取、显示并操作多种数据格式,包括NetCDF(Network Common Data Form,简称nc文件)、HDF和GRIB等。 直观图示:提供丰富的图形选项,帮助用户以可视化的方式理解数据,包括二维图(如等值线图、散点图、条形图等)、三维图(如地形图、等高线图或立体图)和时间序列图等。 数据处理:允许用户进行简单的数据处理,如统计分析、数据筛选和数据重采样等。 图形交互:用户可以缩放、平移图形,更改颜色映射,添加图例等。 文件管理:支持拖放操作,可以轻松打开和比较多个文件。 导出功能:将可视化的结果保存为JPEG、PNG等图片格式,便于报告和演示。

2024-09-22

bp神经网络与MLP多层感知机

bp神经网络与MLP多层感知机

2025-06-29

scikit-learn机器学习

scikit-learn机器学习

2025-06-11

第十章-家用热水器用户行为分析与事件识别

第十章-家用热水器用户行为分析与事件识别

2025-06-11

超市营业额数据分析数据

超市营业额数据

2025-05-16

Eviews8.0安装包.rar

eviews8.0

2025-03-14

eclipse-java-neon-R-win32-x86-64.rar

eclipse

2025-03-14

SEM结构方程模型,因子分析

SEM结构方程模型,因子分析

2025-02-27

Python数据挖掘,分析可视化

Python数据挖掘

2025-02-23

Python数据分析、挖掘与可视化(慕课版)学习资源包

Python数据分析、挖掘与可视化(慕课版)学习资源包

2025-02-23

R语言地理可视化与线性回归分析:基于北京市高端酒店数据的空间分布与定价因素研究

内容概要:本文档介绍了利用R语言绘制地理图表的方法与流程,并演示如何基于特定数据集执行一系列的数据处理、可视化和建模任务。主要包括以下几个方面:①利用Leaflet包创建带有地图标记和交互功能的地图,展示北京高端酒店的价格分布情况。②讲解了从环境配置到关键包(如sf, ggplot2)的成功安装方法及其应用场景。③描述了地图数据准备的具体步骤,包括将GeoJSON格式转换成Shapefile格式的操作指引。④使用线性回归模型进行数据分析和预测,包括不同条件下的房价预测以及模型评估指标解释,同时针对线性模型进行了改进并采用了对数转换方法。 适合人群:具有一定R语言基础知识,从事数据分析或地理信息系统工作的研究人员和技术从业者。 使用场景及目标:帮助用户掌握用R语言绘制地理图表的能力,提高对地理空间数据的理解和应用技能。此外还可以辅助学习如何利用R语言构建线性回归模型,解决实际生活中的房价预估等问题。 阅读建议:本指南详细记录了每一个操作环节,在实践中应严格按照文中所述步骤操作,并关注每一步骤后返回的状态信息来确保各阶段顺利完成。特别是在遇到错误时,可以对照文档内的排错提示调整设置直至问题得到妥善解决。

2025-02-20

ffmpeg爬虫-b站视频-情感分析.zip

ffmpeg爬虫-b站视频-情感分析

2024-12-11

决策树回归LATEX编写-基于乳腺癌数据集实践

决策树回归LATEX编写-基于乳腺癌数据集实践,使用latex编写程序pdf文件,将Python与latex结合运用,提现了多种编写方式的结合。

2024-11-25

训练误差or测试误差与特征个数之间的关系-基于R语言实现

训练误差or测试误差与特征个数之间的关系-基于R语言实现

2024-11-18

矩阵的各种计算:乘法、逆矩阵、转置、行列式等-基于Excel实现

矩阵的各种计算:乘法、逆矩阵、转置、行列式等-基于Excel实现

2024-11-13

eclipse-inst-jre-win64.exe

java编辑器

2024-11-09

文本数据可视化tocsv.csv

文本数据可视化tocsv.csv

2024-11-08

如何区分时间序列的pacf与acf的拖尾性与截尾性

如何区分时间序列的pacf与acf的拖尾性与截尾性

2024-11-08

不同自定义概率分布的更新过程

更新过程(renewal process)是描述元件或设备更新现象的一类随机过程。以下是对更新过程的详细介绍: 一、定义与特点 定义:设对某元件的工作进行观测,假定元件的使用寿命是一随机变量,当元件发生故障时就进行修理或换上新的同类元件,而且元件的更新是即时的(修理或更换元件所需的时间为零)。如果每次更新后元件的工作是相互独立且有相同的寿命分布,令N(t)为在区间(0,t]中的更新次数,则称计数过程{N(t),t≥0}为更新过程。 特点:更新过程是Poisson过程的一种推广,其中事件发生的时间间隔是独立同分布的随机变量。更新过程具有无记忆性,即对于一个更新过程,不管系统是全新的还是被修复了多次,下一次故障的时间间隔都具有相同的分布。 二、重要概念与性质 更新函数:更新函数M(t)是E[N(t)]的期望值,表示到时刻t为止的平均更新次数。M(t)是关于t的不减函数。 平均故障间隔时间(MTBF):即故障间隔时间分布的均值,记为E(X)。它是更新过程模型中的一个有用指标。 大数定律:在更新过程中,当t趋于无穷大时,N(t)/t趋于1/μ,其中μ是平均间隔时间。

2024-10-30

fetch-olivetti-faces数据集

Olivetti Faces人脸数据集合处理 简介 本资源文件提供了Olivetti Faces人脸数据集的处理方法和相关代码。Olivetti Faces是一个经典的人脸识别数据集,包含了40个不同个体的400张灰度图像。每个个体有10张图像,这些图像在不同的光照和表情条件下拍摄。 数据集特点 图像数量:400张 个体数量:40个 每张图像大小:47x47像素 图像格式:灰度图像 数据集下载 数据集可以从以下地址下载: 官方地址:http://cs.nyu.edu/~roweis/data/olivettifaces.gif 备用地址:https://pan.baidu.com/s/1Gp3FLtzNqaq3o9aWqjb8JQ 提取码:9m3c 数据处理 由于数据集是一张大图,每个人脸需要进行切割处理。

2024-10-29

Python分析假期对美国出生率的影响

此数据来自美国疾病控制和预防中心,并通过 Google 的 BigQuery Web UI 使用以下查询进行编译: SELECT year, month, day, IF (is_male, 'M', 'F') AS gender, SUM(record_weight) as births FROM [publicdata:samples.natality] GROUP BY year, month, day, gender ORDER BY year, month, day, gender 它被汇总以符合他们的使用条款。 数据于 2015 年 6 月 9 日访问。 请注意,Andrew Gelman 和他的小组已经对这些数据进行了相当广泛的分析;参见 this post (英文)。

2024-10-28

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除