一、时间序列分析——pacf与acf的拖尾性与截尾性分析
在时间序列分析中,ACF(自相关函数)和PACF(偏自相关函数)的拖尾性和截尾性是识别时间序列模型的重要特征。具体来说:
1.拖尾性:
拖尾是指时间序列的ACF或PACF在某阶之后没有迅速变为0,而是持续存在非零值,可能以指数速率衰减或震荡衰减。例如,AR过程的ACF表现为拖尾性,而MA过程的PACF表现为拖尾性[1][9][17]。
2.截尾性:
截尾是指时间序列的ACF或PACF在某阶之后迅速变为0。例如,AR过程的PACF表现为截尾性,即在超过某个滞后阶数后,PACF值变为0[1][2][3]。
通过观察ACF和PACF图的特征,可以初步判断时间序列模型的类型:
- 如果ACF图拖尾而PACF图截尾,则序列可能符合AR模型[4][6][18]。
- 如果ACF图截尾而PACF图拖尾,则序列可能符合MA模型[6][18]。
- 如果ACF和PACF图均拖尾,则序列可能符合ARMA模型[6][21]。
这些特征对于确定时间序列模型的阶数(如p和q)非常重要,从而帮助进行更准确的时间序列预测和分析。
二、思维脑图
三、相关事件分析
事件名称 | 事件时间 | 事件概述 | 类型 |
时间序列分析技巧分享 | 2024年5月11日 | 介绍了如何通过ACF和PACF图来判断ARMA模型的阶数 | 技术分享 |
拖尾性和截尾性的解释 | 2021年6月19日 | 解释了拖尾性和截尾性在时间序列分析中的重要性 | 教育信息 |
ARIMA-RF组合模型在动力煤价格预测中的应用 | 未明确,但数据覆盖至2022年4月1日 | 采用ARIMA-RF组合模型对秦皇岛动力煤价格进行预测,并通过平稳性分析和参数确定构建有效模型 | 实际应用案例 |
四、参考文献
3. 时间序列---AR MA ARMA ARIMA ARIMAX[toc] 前置知识 ... [2021-05-20]
4. 时间序列分析技巧(一):根据ACF、PACF进行AR、MA [2024-05-11]
6. 中国能源供给与消费预测分析
7. 基于ARIMA模型的青海省肉类产量分析与预测
8. 时间序列中偏相关与自相关出现双截尾的情况怎样解决? - 知乎
9. 时间序列算法全解全析【零基础数模笔记系列】 - Kai-G - 博客园 [2024-02-01]
10. 如何通过acf和pacf初步判断序列是否平稳? - 知乎
11. ARIMA时间序列预测模型详细讲解+Python案例演示 - CSDN博客 [2024-11-03]
12. 计量经济学中,Acf和pacf函数有什么区别? - 知乎
13. 统计 - 时间序列 - 平稳序列分析 - 知乎 - 知乎专栏
14. 高级计量经济学及Stata应用
15. 2023秋季课程:时间序列分析
16. 公共卫生与预防医学
17. 人大网络课堂:STATA专题
18. 考虑监测离群值朱家店滑坡位移预测研究
19. 中国通胀惯性特征与货币政策启示
21. 时间序列Arima模型理论及在Data Studio中的应用
22. 金融时间序列分析讲义
23. ACF和PACF图表达了什么原创 [2021-04-14]
24. 基于ARIMA-RF组合模型的国内动力煤价格预测
25. 影响绿色债券利率的相关因素探究
26. 自相关系数ACF与偏自相关系数PACF,拖尾和截尾- ylxn [2019-04-22]
27. 时间序列预测问题研究
28. 蔬菜定价与补货的预测与规划模型研究
29. 季节性自回归差分移动平均模型在牡蛎中诺如病毒检出率预测上的应用
30. 时间序列分析中的自相关函数(ACF)和偏自相关函数(PACF)_acf pacf-CSDN博客 [2024-10-15]