基于机器学习的分子动力学
https://mp.weixin.qq.com/s/j2eMTmv-4SvADuP--7GKYA
第一部分(分子动力学基础)
理论内容
1. 从大数据时代到AI4SCIENCE时代
2.传统分子动力学模拟:经验力场与第一性原理分子动力学
3.机器学习概述
4.机器学习力场的特性,发展和分类
5.机器学习力场构建的一般流程
实操内容(以含氟有机体系为案例)
1. 使用mamba/conda配置虚拟环境,安装LAMMPS,OpenMM,DFTB,XTB,MDtraj,Obabel,ASE等软件
2. 综合使用sobtop软件快速生成任意有机分子的GAFF力场参数文件,并使用OpenMM执行分子模拟
3. sobtop软件的基本介绍和批量操作
4. GAFF力场的概述
5.OpenMM的基本使用
6. 使用XTB或ORCA等软件得到高精度量化数据集
6.1 XTB或ORCA的特点与使用,以及后处理
7. 使用DFTB执行半经验方法GFN2-xTB级别的周期性AIMD
7.1为什么是GFN2-xTB?
7.2如何使用DFTB软件执行周期性的AIMD,及其使用技巧
8. 综合使用机器学习势函数和LAMMPS软件执行分子动力学模拟
8.1 LAMMPS的基本使用
8.2 机器学习模型的加载和注意事项