当机器学习遇上分子动力学模拟能碰撞出怎样的火花

本文详细介绍了机器学习在分子动力学中的应用,包括机器学习力场的构建方法、各种模型如BPNN、SchNet、DeePMD和等变模型的理论与实操,以含氟有机体系和合金体系为例,涵盖数据处理、模型训练与模拟分析,同时讨论了数据收集和主动学习技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于机器学习的分子动力学

https://mp.weixin.qq.com/s/j2eMTmv-4SvADuP--7GKYA

  第一部分(分子动力学基础)

  理论内容

 1. 从大数据时代到AI4SCIENCE时代

 2.传统分子动力学模拟:经验力场与第一性原理分子动力学

 3.机器学习概述 

 4.机器学习力场的特性,发展和分类

 5.机器学习力场构建的一般流程

实操内容(以含氟有机体系为案例)

 1. 使用mamba/conda配置虚拟环境,安装LAMMPS,OpenMM,DFTB,XTB,MDtraj,Obabel,ASE等软件

 2. 综合使用sobtop软件快速生成任意有机分子的GAFF力场参数文件,并使用OpenMM执行分子模拟

 3. sobtop软件的基本介绍和批量操作

 4. GAFF力场的概述

 5.OpenMM的基本使用

 6. 使用XTB或ORCA等软件得到高精度量化数据集

 6.1 XTB或ORCA的特点与使用,以及后处理

 7.  使用DFTB执行半经验方法GFN2-xTB级别的周期性AIMD

 7.1为什么是GFN2-xTB?

 7.2如何使用DFTB软件执行周期性的AIMD,及其使用技巧

 8. 综合使用机器学习势函数和LAMMPS软件执行分子动力学模拟

 8.1 LAMMPS的基本使用

 8.2 机器学习模型的加载和注意事项

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值