SD-WebUI forge支持flux模型。算力互联forge镜像使用教程

SD-WebUI Forge运行截图:
在这里插入图片描述
以下为教程:

启动SD

首先要选择使用我的镜像创建容器实例
1.进入Jupyter
在这里插入图片描述
2.双击打开左边main.ipynb,打开脚本
在这里插入图片描述
3.选中运行的代码,点击上面的运行符号

在这里插入图片描述
4.出现7860端口开放,说明运行成功了
在这里插入图片描述

进入SD-WebUI

方法一:

1.点击应用服务
在这里插入图片描述
2. 找到应用地址,点进去即可

### stable-diffusion-webui webui.bat 安装 报错 解决方案 #### 错误分析 当遇到 `webui-user.bat` 启动 Stable Diffusion WebUI 时报错 `RuntimeError: Torch is not able to use GPU`,这通常意味着 PyTorch 未能成功检测到可用的 GPU 设备[^1]。 #### 可能原因及解决方案 #### 驱动程序不兼容或未更新 确保已安装最新的 NVIDIA 显卡驱动程序。旧版本可能与当前使用的 CUDA 版本存在冲突,从而阻止 PyTorch 正常访问 GPU 资源。建议前往[NVIDIA官方网站](https://www.nvidia.cn/Download/index.aspx)下载并安装最新版显卡驱动。 #### CUDA 和 cuDNN 不匹配 Stable Diffusion WebUI 的正常运行依赖于特定版本的 CUDA Toolkit 和 cuDNN 库。如果这些库的版本号不符合要求,则可能导致上述错误发生。可以尝试重新安装适合所用硬件环境的最佳组合: - 对于大多数情况而言,CUDA 11.x 是较为通用的选择; - 确认 cuDNN 的版本需与选定的 CUDA 版本相适配; 具体操作指南可参照官方文档说明进行设置[^2]。 #### Python 环境变量配置不当 有时由于路径设置问题也会引发此类异常。检查系统的 PATH 环境变量中是否包含了指向正确位置下的 Miniconda 或 Anaconda 文件夹及其 Scripts 子目录。此外还需确认 Conda Base (root) 已被激活以便顺利调用 conda 命令来管理虚拟环境中所需的包资源。 #### 使用预构建镜像简化部署流程 对于希望快速搭建开发测试平台而不愿花费过多精处理底层依赖关系调整的朋友来说,采用 Docker 容器化技术不失为一种高效途径。特别是针对 Mac 用户提到过的 [stable-diffusion-webui-forge][^3] 这样的项目提供了更为简便的一键式安装体验,极大降低了初次接触者的入门门槛。 ```bash docker pull automatic1111/stable-diffusion-webui docker run -d --name sd-webui -p 7860:7860 automatic1111/stable-diffusion-webui ``` 通过以上几种方式应该能够有效解决大部分因 GPU 支持缺失而导致的问题。当然实际场景下还可能存在其他潜在因素影响最终效果,因此在排查过程中保持耐心逐步验证每一个环节直至找到确切根源所在是非常重要的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值